Storage Modulus (storage + modulus)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Selected Abstracts

Polymerization of linseed oil with phenolic resins

Gkhan ayl
Abstract In this study, linseed oil was directly polymerized with different oil soluble resoles. p- Ethyl (PEP), p-tertiary butyl (PTB), p-tertiary octyl (PTO), and p- phenyl (PPP) phenols were separately reacted with formaldehyde to give linseed oil soluble resoles. These were then reacted with linseed oil to give transparent rubbery polymers. A model reaction was performed with methyl oleate and PTB phenol resole to clarify the reaction mechanism. Reaction products were characterized with 1H-NMR and IR techniques. Spectral examination of the model reaction showed that polymerization reaction proceeded via ene reaction of the quinone methide formed at the end group of the resole with the allylic positions of the fatty ester. Rubbery polymers were obtained with linseed oil using 10 to 40% of the different resoles. Hard, load bearing and tough materials were obtained at 40% phenolic resin loading. Mechanical properties of the materials were characterized by dynamic mechanical analyzer (DMA) and stress,strain tests. The best mechanical and thermal properties were obtained with PEP resole which showed a storage modulus of 350 MPa and a tan , peak at 65C. Storage moduli of 275, 250, and 30 were obtained for PPP, PTB, and PTO resoles-linseed oil polymers, respectively. At the same phenolic resin loading, elongation at break and swelling ratios in CH2Cl2 increased with the longer alkyl substitution on the resole resins. The highest thermal stability was observed by PEP resole,linseed oil polymer which has a 5% weight loss temperature of 340C as determined by TGA. The lowest thermal stability was observed for PTB resole-linseed oil polymer at 220C. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Change of properties during storage of a UDMA/TEGDMA dental resin

Jong Keun Lee
Abstract The aim of this study was to evaluate the changes in viscoelastic properties of a UDMA-based dental resin as a function of time after initial light exposure. Specimens of a UDMA/TEGDMA (70:30 wt%) resin were irradiated by a visible-light-curing unit. Immediately after the irradiation, the light-cured specimen was stored in the dark for different times from 1 to 120 h at 37 C, and characterized by means of DMA, DSC, and FTIR spectroscopy. The irradiated specimen exhibited a bimodal shape in the form of two rapid declines in log E, corresponding to glass transition with a plateau between the two declines. Two distinct peaks were seen in tan , versus temperature. The thermal reaction of the incompletely cured sample with residual groups trapped by the fast reaction during irradiation is responsible for the plateau. After storage, significant changes were observed in dynamic mechanical parameters, DSC exotherm, and degree of conversion. Storage modulus continued to increase during the 4 h of storage and leveled off thereafter. Peak heights of tan , versus temperature were also influenced by storage. Degree of conversion increased from 75 2% immediately after irradiation to 87 3% after 120 h storage. The changes of the properties of this dental resin system when stored at 37 C after irradiation are clinically important in terms of stability, durability, and performance after initial polymerization. 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 68B: 216,221, 2004 [source]

Characteristics of Sarcoplasmic Proteins and Their Interaction with Surimi and Kamaboko Gel

A. Jafarpour
ABSTRACT:, This study examined the effect of adding common carp sarcoplasmic proteins (Sp- P) on the gel characteristics of threadfin bream surimi and kamaboko while maintaining constant moisture and myofibrillar levels. Based on the temperature sweep test, which is involved in heating of surimi gel from 10 to 80 C to monitor the viscoelastic properties, at temperature range of 40 to 50 C, the decrease level (depth of valley) in storage modulus (G,) thermograph was in proportion to the concentration of added Sp- P. Storage modulus (G,) showed greater elasticity after adding Sp- P compared with the control without Sp- P. Furthermore, the breaking force and distance and consequently gel strength of the resultant kamaboko were improved significantly (P > 0.05). Thus, added Sp- P did not interfere with myofibrillar proteins during sol,gel transition phase but associated with textural quality enhancement of resultant kamaboko; however, addition of Sp- P from the dark muscle of the carp decreased the whiteness of the resultant surimi. Furthermore, according to the SEM micrographs, the gel strength could not be associated with either the number of polygonal structures/mm2 or the area of the polygonal structures in the kamaboko gel microstructure. [source]

Application of a Depth Sensing Indentation Hardness Test to Evaluate the Mechanical Properties of Food Materials

N. Zkan
ABSTRACT: A depth sensing indentation hardness test with an associated analysis is described as a convenient and simple technique for characterizing mechanical properties of food materials, such as hardness (H), elastic modulus (E), and an elasticity index (IE), which represents the ratio of elastic to total deformation. Storage modulus (G,) and loss tangent (tan) of the selected model food material, a whey protein concentrate (WPC) gel, have also been determined using an oscillatory dynamic testing. Fractal dimension (D) and strain rate (or frequency) exponent (n) of the WPC gels were determined using both the indentation and dynamic test results. A good correlation between the results from the indentation and the dynamic tests was established. The effects of protein concentration, deformation rate, and chemical treatment on the mechanical properties of the WPC gels were clearly illustrated using the indentation test. [source]

Effect of EPDM on Morphology, Mechanical Properties, Crystallization Behavior and Viscoelastic Properties of iPP+HDPE Blends

Nina Vranjes
Abstract Summary: Blends of isotactic polypropylene (iPP) and high density polyethylene (HDPE) with and without ethylene-propylene-diene (EPDM) terpolymer as compatibilizer were systematically investigated to determine the influence of the EPDM on blends properties. The morphology was studied by Scanning Electron Microscopy (SEM). Mechanical properties of investigated systems: tensile strength at break, elongation at break, yield stress and Izod impact strength were determined. Crystallization behavior was determined by Differential Scanning Calorimetry (DSC). Dynamic Mechanical Analysis (DMA) was used to determined the storage modulus (E,), loss modulus (E,), and loss tangent (tan ,). The PP+HDPE blend revealed poor adhesion between PP and HDPE phases. Finer morphology was obtained by EPDM addition in PP+HDPE blends and better interfacial adhesion. Addition of HDPE to PP decreased tensile strength at break, elongation and yield stress. Decrease of tensile strength and yield stress is faster with EPDM addition in PP+HDPE blends. Elongation at break and impact strength was significantly increased with EPDM addition. The addition of EPDM in PP+HDPE blends did not significantly change melting points of PP phase, while melting points of HDPE phase was slightly decreased in PP+HDPE+EPDM blends. The EPDM addition increased the percentage of crystallization (Xc) of PP in PP+HDPE blends. The increase of Xc of HDPE was found in the blend with HDPE as matrix. Dynamical mechanical analysis showed glass transitions of PP and HDPE phase, as well as the relaxation transitions of their crystalline phase. By addition of EPDM glass transitions (Tg) of HDPE and PP phases in PP+HDPE blends decreased. Storage modulus (E,) vs. temperatures (T) curves are in the region between E,/T curves of neat PP and HDPE. The decrease of E, values at 25,C with EPDM addition in PP+HDPE blends is more pronounced. [source]

Casein gelation under simultaneous action of transglutaminase and glucono-,-lactone

Orqudea Menndez
Abstract Casein solutions (5% w/v) were treated with microbial transglutaminase (MTG) and glucono-,-lactone (GDL) under varying conditions in order to obtain gels. Storage modulus (G ,) and gelation time of the gels were measured by oscillation rheometry, while protein cross-linking was determined by gel permeation chromatography. The addition of only GDL to milk resulted in very weak gels, while MTG on its own was not able to create gel networks. Simultaneous action of both ingredients led to gels, the firmness of which was linearly related to the added amount of MTG, but passed through a maximum with rising GDL concentrations. Using chromatographical analysis, increasing G , values were interrelated with the formation of MTG-induced oligomers. The gelation time was directly proportional to the GDL concentration but not influenced by the addition of MTG within the studied range of concentration. [source]

In situ reinforcement of poly(butylene terephthalate) and butyl rubber by liquid crystalline polymer

S. Kumar
Ternary in situ butyl rubber (IIR)/poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) blends were prepared by compression molding. The LCP used was a versatile Vectra A950, and the matrix material was IIR/PBT 50/50 by weight. Morphological, thermal, and mechanical properties of blends were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry, and thermogravimetric analysis (TGA). Microscopy study (SEM) showed that formation of fibers is increasing with the increasing amount of LCP A950. Microscopic examination of the fractured surface confirmed the presence of a polymer coating on LCP fibrils. This can be attributed to some interactions including both chemical and physical one. The increased compatibility in polymer blends, consisting of IIR/PBT, by the presence of LCP A950 may be explained by the adsorption phenomena of the polymer chains onto the LCP fibrils. SEM and AFM images provided the evidence of the interaction between IIR/PBT and the LCP. Dynamic mechanical analyses (DMA) and TGA measurements showed that the composites possessed a remarkably higher modulus and heat stability than the unfilled system. Storage modulus for the ternary blend containing 50 wt% of LCP exhibits about 94% increment compared with binary blend of IIR/PBT. From the above results, it is suggested that the LCP A950 can act as reinforcement agent in the blends. Moreover, the fine dispersion of LCP was observed with no extensional forces applied during mixing, indicating the importance of interfacial adhesion for the fibril formation. POLYM. COMPOS., 2009. 2008 Society of Plastics Engineers [source]

Effect of clay exfoliation and organic modification on morphological, dynamic mechanical, and thermal behavior of melt-compounded polyamide-6 nanocomposites

Smita Mohanty
Abstract Polyamide-6/clay nanocomposites were prepared employing melt bending or compounding technique followed by injection molding using different organically modified clays. X-ray diffraction and transmission electron microscopy were used to determine the molecular dispersion of the modified clays within the matrix polymer. Mechanical tests revealed an increase in tensile and flexural properties of the matrix polymer with the increase in clay loading from 0 to 5%. C30B/polyamide-6 nanocomposites exhibited optimum mechanical performance at 5% clay loading. Storage modulus of polyamide-6 also increased in the nanocomposites, indicating an increase in the stiffness of the matrix polymer with the addition of nanoclays. Furthermore, water absorption studies confirmed comparatively lesser tendency of water uptake in these nanocomposites. HDT of the virgin matrix increased substantially with the addition of organically modified clays. DSC measurements revealed both , and , transitions in the matrix polymer as well as in the nanocomposites. The crystallization temperature (Tc) exhibited an increase in case of C30B/polyamide-6 nanocomposites. Thermal stability of virgin polyamide-6 and the nanocomposites has been investigated employing thermogravimetric analysis. POLYM. COMPOS., 28:153,162, 2007. 2007 Society of Plastics Engineers [source]

Dynamic viscoelasticity of hybrid kevlar and glass fiber reinforced LLDPE in the molten state

S. A. R. Hashmi
Kevlar and glass fibers were used to reinforce linear low density polyethylene (LLDPE), and composite sheets of 0.8, 1.5 and 2.5 mm thicknesses were obtained by using a compression molding technique. Dynamic viscoelastic properties of non-hybrid and hybrid composites of various compositions at 200C are evaluated. Storage modulus (G,) and loss modulus (G,) increase with angular frequency (,) and reinforcement. Replacement of glass fiber by Kevlar at constant loading of fibers in LLDPE increases the value of G,, G, and ,,. The fractured surface of composite shows the gradient orientation of fibers particularly in 2.5 mm thick sheet. Top and bottom layers show relatively two-dimensional orientation as compared to the middle layer, which shows random orientation. The orientation of fibers decreases G, and ,, of Kevlar fiber and hybrid fiber hybrid fiber reinforced LLDPE composites. The effect of change in distance between parallel plate of rheometer (change in strain amplitude) on dynamic rheological properties is studied and reported here. [source]

Effect of wood flour loading and thermal annealing on viscoelastic properties of poly(lactic acid) composite films

M. Hrabalova
Abstract Poly(lactic acid) (PLA) films filled with up to 50 wt % softwood flour were prepared by melt compounding and thermocompression. Thermal annealing of the melt was performed at temperatures from 90C to 120C, for 45 min. Responses on polymer-filler interactions, viscoelastic properties, crystallinity of PLA as well as PLA-wood flour-filled films were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The effectiveness of fillers on the storage moduli (C) was also calculated. The results reveal that wood flour (WF) in conjunction with thermal annealing affected the melting behavior of PLA matrix, and the glass transition temperature. It was further found that the effectiveness of the wood filler in biocomposites widely improved with thermal annealing as well as with higher WF concentration. Finally, it was found that the compatibility between WF and the PLA matrix can be improved when suitable annealing conditions are applied. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

On the Interrelationship of Transreactions with Thermal Properties and Dynamic Mechanical Analysis of PTT/PEN Blends

Seyed-Hassan Jafari
Abstract An attempt was made to explore the effects of interchange reactions on the crystallization, melting, and dynamic mechanical behavior of binary blends based on poly(trimethylene terephthalate) (PTT)/poly(ethylene 2,6-naphthalate) (PEN). 1H NMR spectroscopy is used to verify the occurrence of interchange reactions at the interface, which are increased upon an increase in the melt processing time and temperature. The crystallinity of PTT was reduced while that of PEN was increased on blending. In addition, the crystallization temperatures of both phases showed depression. A single composition-dependent glass transition temperature (Tg) was detected in the second and subsequent heating thermograms of the blends, which is indicative of miscibility. The cold crystallization of the PTT phase was observed to increase while that of PEN was suppressed on blending. Each phase crystallized individually and a melting point depression was evident, which suggests a certain level of miscibility. Dynamic mechanical thermal analysis corroborated differential scanning calorimetry results. A constructive synergism was observed in the glassy state storage moduli of the blends, which is suggestive of a reduced specific volume of the system because of enhanced interactions and crystallinity. [source]

Polypropylene/Clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior

Sangeeta Hambir
Polypropylene (PP)/clay nanocomposites are prepared using different grades of PP, compatibilizers, and organically modified clays. The melt intercalation of the PP is carried out in presence of a compatibilizer. The nanocomposites are characterized using various techniques for the structure and properties. X-ray diffraction results indicate well-defined structures. Thermogravimetric analysis indicates improved thermal stability of PP/clay nanocomposites. Isothermal crystallization studies carried out using differential scanning calorimeter illustrate enhanced crystallization of PP in all the nanocomposites. Optical microscopic study demonstrates that the nanocomposites can be crystallized at higher temperatures, exhibiting well-defined birefringent structures. The dynamic mechanical analysis reveals higher storage moduli over a temperature range of ,400C to 1200C for nanocomposites, and the extent of increase in the storage modulus is dependent on the type of compatibilizer used. [source]

Single-walled nanotube bucky paper and nanocomposite

Jihua Gou
Abstract A new processing method for the fabrication of single-walled nanotube (SWNT)-reinforced nanocomposites was developed to achieve uniform dispersion and high composition of the nanotubes in the nanocomposites. In this method, SWNTs were preformed as bucky paper by multi-step dispersion and micro-filtration of a suspension of nanotubes. The nanocomposites were then fabricated by infiltration of diluted epoxy resin through the bucky paper and hot pressing. The wetting of the nanocomposites was examined using scanning electron microscopy and atomic force microscopy. The results showed that the epoxy resin completely penetrated the bucky paper through the nanoporous structures. The results of dynamic mechanical analysis of the nanocomposites showed that the storage moduli of the nanocomposites increased by 200,250%. The tan , curves indicated that the nanotubes had a strong influence on the damping properties of the nanocomposites. This processing technique is an effective method for fabricating nanocomposites with uniform dispersion and high composition of SWNTs. Copyright 2006 Society of Chemical Industry [source]

Solid-state linear viscoelastic properties of intercalated poly(L -lactide)/organo-modified montmorillonite hybrids

Pham Hoai Nam
Abstract Hybrids of poly(L -lactide)/organophilic clay (PLACHs) have been prepared by a melt-compounding process using poly(L -lactide) (PLLA) and different contents of surface-treated montmorillonite modified with a dimethyl dioctadecyl ammonium salt. The dispersion structures of clay particles in PLACHs were investigated using wide-angle X-ray diffraction and transmission electron microscopy. The solid-state linear viscoelastic properties for these PLACHs were examined as functions of temperature and frequency. The incorporation of organo-modified silicate into PLLA matrix enhanced significantly both storage moduli (E,) and loss moduli (E,). The strong enhancement observed in dynamic moduli of PLACHs could be attributed to uniformly dispersed state of the clay particles with high aspect ratio (= length/thickness of clay) and the intercalation of the PLLA chains between silicate layers. Copyright 2006 Society of Chemical Industry [source]

Rheological behavior of crystallizing palm oil

Veerle De Graef
Abstract The static isothermal crystallization of palm oil was studied by oscillatory rheology. The phase angle, complex modulus, storage modulus and loss modulus were followed as a function of the crystallization time. Various crystallization temperatures were applied, and the results obtained by oscillatory rheology were compared with crystallization data obtained by more classical techniques like differential scanning calorimetry (DSC) and pulsed nuclear magnetic resonance (pNMR). It was shown that oscillatory rheology is a valuable complementary method to DSC and pNMR to evaluate primary crystallization. Like DSC and pNMR, oscillatory rheology is capable of differentiating whether crystallization occurs in a two-stage or a single-stage process. In addition, oscillatory measurements also allow the evaluation of aggregation, network formation and post-hardening events like sintering and thus provide information on the crystal network and the final macroscopic properties of the crystallized sample. [source]

Asymmmetric Diamino Functionalization of Nanotubes Assisted by BOC Protection and Their Epoxy Nanocomposites

Yao Zhao
Abstract Homogenous dispersion and strong interfacial bonding are prerequisites for taking full advantage of the mechanical properties of nanotubes in a composite. In order to simultaneously achieve both conditions, a highly efficient and mechanically non-destructive functionalization of nanotubes is developed. With fluoronanotubes as the precursor, asymmetric diamine molecules, N -BOC-1,6-diaminohexane, are used to replace fluorines on the wall of fluoronanotubes and construct covalent bonding to the surface of the nanotubes. A BOC de-protection reaction is conducted and the resulting exposed amino groups create strong covalent bonds with the matrix in the course of epoxy ring-opening etherification and curing chemical reactions. In comparison with the conventional functionalization based on symmetric diamine molecules, the functionalized nanotubes derived from the BOC-protected diamine molecule are more dispersed within the epoxy matrix. Dynamic mechanical analysis shows that the functionalized nanotubes have better crosslinking with the matrix. The composites reinforced by the nanotubes demonstrate improvement in various mechanical properties. The Young's Modulus, ultimate tensile strength, and storage modulus of composites loaded with 0.5 wt% functionalized nanotubes are enhanced by 30%, 25%, and 10%, respectively, compared with the neat epoxy. The increase of the glass transition temperature, as much as 10 C, makes the composites suited for engineering applications under higher temperatures. The new functionalization method allows for an competitive enhancement in the composite performance in use of relatively low cost raw nanotubes at a small loading level. The reinforcement mechanism of the functionalized nanotubes in the epoxy resin is discussed. [source]

A Combined Process of In Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube,Polymer Nanocomposites: Toward Applications as Thermal Interface Materials

Wei Lin
Ultrasmall thermal expansion of aligned carbon nanotube,epoxy composites at temperatures below and above the glass transition is achieved by a novel combined process of in situ functionalization and microwave treatment. Carbon nanotube,polymer interfacial bonding is the key to the reduced thermal expansion, enhanced storage modulus, and improved thermal conductivity. [source]

Effect of heat treatment of skim milk and final fermentation pH on graininess and roughness of stirred yogurt

The effects of heat treatment of skim milk (95C/80 s, 95C/256 s, 110C/40 s, 110C/180 s, 130C/20 s and 130C/80 s) and final fermentation pH of yogurt (4.8 and 4.4) on physical characteristics of stirred yogurt were investigated. Physical properties, including graininess and roughness, of stirred yogurt were determined during storage at 4C for 15 days. Number of grains, perimeter of grains, visual roughness, storage modulus and yield stress decreased, when heating temperature or final fermentation pH increased. For practical applications, processing parameters such as heat treatment and fermentation pH can be optimized to improve quality or modified to create fermented milk products with different physical properties. [source]

Starch-lipid composites in plain set yogurt

Mukti Singh
Summary Starch-lipid composites (SLC) were used to replace milk solids in yogurt mixes. The effects of the SLC on the yogurt fermentations and rheology were studied. The rate of fermentation was evaluated by the change of pH during the fermentation of yogurt. The syneresis of yogurt was observed over 3 weeks of storage. Small amplitude oscillatory shear flow measurements of the storage modulus, the loss modulus, and the loss tangent were obtained using a vane geometry. Yogurt mixes with milk solids partially replaced by SLC fermented at a similar rate than as with no milk solids replaced. Initial viscosity was higher for yogurt mixes with higher levels of SLC. The higher initial viscosity did not affect the gel structure. The addition of SLC above a level of 3% strengthened the gel and resulted in no syneresis for yogurt samples stored for 3 weeks at 4 C. [source]

Nanofilled polyethersulfone as matrix for continuous glass fibers composites: Mechanical properties and solvent resistance,

M. Aurilia
Abstract Polyethersulfone (PES) is high performance thermoplastic polymer; however, its applications are limited by the poor resistance to several classes of solvents. Fumed silica and expanded graphite nanoparticles were used to prepare nanofilled PES by a melt-compounding technique with the view to improve the barrier properties. Solvent uptake at equilibrium and solvents resistance of nanofilled PES compounds were investigated by three different methodologies: (1) weight increase by methylene chloride absorption in a vapor-saturated atmosphere, (2) solvent uptake of acetone at equilibrium, and (3) decay of storage modulus induced by acetone diffusion. The storage modulus decay was measured by means of dynamic mechanical analysis on samples immersed in an acetone bath. The collected data were fitted to an ad hoc model to calculate the diffusion coefficient. The produced nanofilled PES showed a significant improvement in barrier properties and considerable reduction in acetone uptake at equilibrium, in comparison with the neat PES. Nanofilled PES compounds were also used to produce continuous glass fiber composites by the film-stacking manufacturing technique. The composites exhibited, by and large, improvements in flexural and shear strength. Their solvent resistance was evaluated by measuring the variation of mechanical properties after exposure to acetone for 1 and 5 days. These tests showed that the composites produced with the nanocomposite matrix did not exhibit higher solvent resistance than those prepared with neat PES, probably because of the deterioration of the fiber/nanocomposite-matrix interfacial bond in the wet state. 2010 Wiley Periodicals, Inc. Adv Polym Techn 29:146,160, 2010; View this article online at wileyonlinelibrary. DOI 10.1002/adv.20187 [source]

Rheology and thermal properties of polypropylene modified by reactive extrusion with dicumyl peroxide and trimethylol propane triacrylate

Feng-Hua Su
Abstract Trimethylol propane triacrylate (TMPTA) and dicumyl peroxide (DCP) were used to modify polypropylene (PP) by reactive extrusion in a twin-screw extruder. The effects of TMPTA concentration on oscillatory shear rheology, melt elongational rheology, and thermal properties were comparatively evaluated. Fourier transform infrared spectroscopy indicated that the grafting reaction took place and TMPTA had been grafted onto the PP backbone. Differential scanning calorimetric results showed that the crystallization temperatures of modified PPs were higher than those of the initial and degraded PPs. The rheological characteristics such as higher storage modulus (G,) at low frequency, increased degree of shear thinning, a plateau in tan ,,, plot, and upturning at high viscosity in the Cole,Cole plots proved that the long-chain branches have been added to the linear PP molecule. The melt elongational rheology showed that the modified PPs exhibit improved melt strength and increased elongational viscosity in the presence of TMPTA and DCP, which further confirmed the existence of long-chain branching (LCB) in their backbone. According to the analytical results from oscillatory shear rheology and elongational rheology, it can be inferred that the LCB level in modified samples increases with an increase in TMPTA concentration. 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:16,25, 2009; Published online in Wiley InterScience ( DOI 10.1002/adv.20146 [source]

Polymer characterization by ultrasonic wave propagation

Francesca Lionetto
Abstract The propagation of low-intensity ultrasound in polymers, acting as a high-frequency dynamic mechanical deformation, can be successfully used to monitor changes in the modulus of polymers associated with glass transition, crystallization, cross-linking, and other chemical and physical phenomena related to changes in the viscoelastic behavior, such as gelation phenomena. The velocity of sound is related to the polymer storage modulus and density, whereas the absorption of ultrasonic waves is related to the energy dissipation in the material and, therefore, to the loss modulus. Accordingly, ultrasonic measurements have been used by several authors to monitor the evolution of the viscoelastic moduli of polymers as a function of time or temperature and, recently, become a characterization technique of its own right, generally known as ultrasonic dynamic mechanical analysis (UDMA). Often the technique is used in conjunction with rheological methods as a means of providing a better insight into the viscoelastic behavior of polymer systems. As yet UDMA is underutilized primarily because of the low operating temperatures (usually below 100,C) of commercially available ultrasonic transducers, and also due to the requirement of a coupling medium to ensure an efficient energy transfer mechanism between the transducer and the test material. Despite these limitations, this paper shows that the use of ultrasonics is potentially a powerful method for the characterization of polymers, particularly as a tool for online monitoring of events occurring during polymer processing and in the manufacture of polymer matrix composites. The aim of this paper is to review the progress made in recent years, highlighting the potential and reliability of UDMA for monitoring physical transitions in polymers such as glass transition, melting, crystallization, as well as physical changes taking place during curing of thermosetting resins. 2009 Wiley Periodicals, Inc. Adv Polym Techn 27:63,73, 2008; Published online in Wiley InterScience ( DOI 10.1002/adv.20124 [source]

Quantitative relation between shear history and rheological properties of LDPE

Masayuki Yamaguchi
The role of the applied processing equipment shear history on the rheological properties of low-density polyethylene was studied in detail. It was found that the shear history depresses the melt strength and the oscillatory shear modulus, especially the storage modulus in low frequency region. This phenomenon is not caused by lowering of the molecular weight, which remained the same as the original, for all shear history samples, indicating absence of mechanical/thermal degradation during processing. Furthermore, annealing the melt processed samples enhances both the melt strength and the oscillatory modulus to the values of the original, unsheared sample. Finally we applied shear history in a cone-and-plate rheometer and found that the growth curve of the storage modulus, which can be expressed by a simple equation, is determined by both the duration of the flow and the magnitude of the applied shear stress. 2001 John Wiley & Sons, Inc. Adv Polym Techn 20: 261,269, 2001 [source]

Highly purified natural rubber by saponificaion of latex: Analysis of green and cured properties

Sureerut Amnuaypornsri
Abstract Natural rubber (NR) was purified by saponification of fresh latex from Hevea brasiliensis and soaking process of the coagulum with aqueous NaOH solution. This treatment resulted in the decrease of nitrogen content to the same level as enzymatic deproteinized NR. The saponification of NR latex and soaking of the coagulum gave the rubber having good processability with easy to cure. The saponified rubber showed outstanding physical and dynamic mechanical properties such as high tensile properties, high storage modulus, low tan ,, low heat build-up and low dynamic compression set. The saponified rubber blend with styrene butadiene rubber (SBR) according to the recipe of rubber tire showed also a good performance. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Curing behavior and mechanical properties of hollow glass microsphere/bisphenol a dicyanate ester composites

Jinhe Wang
Abstract Hollow glass microsphere (HGS)/bisphenol A dicyanate ester (BADCy) composites have been prepared by mechanical mixing, followed by a stepped curing process. The effect of HGS on the curing behavior of BADCy was studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties of the composites were examined by mechanical tests, and the improvements of the mechanical properties were investigated by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). The results show that HGS is catalytic for the polycyclomerization of the BADCy, which is advantageous to reduce the maximal processing temperature. The impact strength, flexural strength, flexural modulus and storage modulus of BADCy are improved. The improvements of the mechanical properties without sacrificing thermal properties, the ability of lowing processing temperature and the low cost make HGS good filler for cyanate ester resin. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Polymerization of linseed oil with phenolic resins

Gkhan ayl
Abstract In this study, linseed oil was directly polymerized with different oil soluble resoles. p- Ethyl (PEP), p-tertiary butyl (PTB), p-tertiary octyl (PTO), and p- phenyl (PPP) phenols were separately reacted with formaldehyde to give linseed oil soluble resoles. These were then reacted with linseed oil to give transparent rubbery polymers. A model reaction was performed with methyl oleate and PTB phenol resole to clarify the reaction mechanism. Reaction products were characterized with 1H-NMR and IR techniques. Spectral examination of the model reaction showed that polymerization reaction proceeded via ene reaction of the quinone methide formed at the end group of the resole with the allylic positions of the fatty ester. Rubbery polymers were obtained with linseed oil using 10 to 40% of the different resoles. Hard, load bearing and tough materials were obtained at 40% phenolic resin loading. Mechanical properties of the materials were characterized by dynamic mechanical analyzer (DMA) and stress,strain tests. The best mechanical and thermal properties were obtained with PEP resole which showed a storage modulus of 350 MPa and a tan , peak at 65C. Storage moduli of 275, 250, and 30 were obtained for PPP, PTB, and PTO resoles-linseed oil polymers, respectively. At the same phenolic resin loading, elongation at break and swelling ratios in CH2Cl2 increased with the longer alkyl substitution on the resole resins. The highest thermal stability was observed by PEP resole,linseed oil polymer which has a 5% weight loss temperature of 340C as determined by TGA. The lowest thermal stability was observed for PTB resole-linseed oil polymer at 220C. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Effect of long-term natural aging on the thermal, mechanical, and viscoelastic behavior of biomedical grade of ultra high molecular weight polyethylene

H. Fouad
Abstract In the total joint prostheses, Ultra High Molecular Weight Polyethylene (UHMWPE) may undergo an oxidative degradation in the long term. The overall properties of UHMWPE are expected to be altered due to the oxidative degradation. The goal of this study is to investigate the effects of natural aging up to 6 years in air on the thermal, mechanical, and viscoelastic properties of UHMWPE that was used in total joint replacement. The changes in UHMWPE properties due to aging are determined using Differential Scanning Calorimetry (DSC), uniaxial tensile tests, and Dynamic Mechanical Analysis (DMA). The DSC results show that the lamellar thickness and degree of crystallinity of UHMWPE specimens increase by 38% and 12% due to aging. A small shoulder region in the DSC thermograms is remarked for aged specimens, which is an indication of formation of new crystalline forms within their amorphous region. The tensile properties of aged and nonaged UHMWPE specimens show a significant decrease in the elastic modulus, yield, fracture stresses, and strain at break due to aging. The DM testing results indicate that the storage modulus and creep resistance of UHMWPE specimens decrease significantly due to aging. Also, it is remarked that the , relaxation peak for aged UHMWPE specimens occurs at lower temperature compared to nonaged ones. The significant reduction in the strength and creep resistance of UHMWPE specimens due to aging would affect the long-term clinical performance of the total joint replacement and should be taken into consideration during artificial joint design. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Systematic study of interfacial interactions between clays and an ionomer

Yan Gao
Abstract To study the interfacial interactions between an ionomer [poly(ethylene- co -acrylic acid) neutralized by zinc salts (PI)] and clays, PI,clay nanocomposites were prepared using a solution method. Two types of commercially available montmorillonite clays respectively K10 and KSF were used, and were modified with organic modifiers with chain lengths of 12,18 carbons. The interactions between the PI, clays, and modifiers were evaluated through study of the structure, morphology, and properties of the PI,clay nanocomposites. We found that the modifiers were successfully intercalated into the clay layers (Fourier transform infrared spectroscopy). The clay modified with a long-chain agent showed an exfoliated nature in the nanocomposite. The thermal stability and storage modulus of PI were improved greatly by the addition of the clays, especially when the long-chain modifier was used (thermogravimetric analysis and dynamic mechanical analysis). The differential scanning calorimetry results show that clay layers are inserted into the clusters because of solvent-directed morphological evolution, so the transition of the ionic domains and the crystallinity of PI are changed. The interaction between PI, the modifier, and the silicate layer played an important role in the determination of the properties of the nanocomposites. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite

Zhichao Liang
Abstract Biodegradable polymeric composites were fabricated from poly(butylene succinate) (PBS) and kenaf fiber (KF) by melt mixing technique. The mechanical and dynamic mechanical properties, morphology and crystallization behavior were investigated for PBS/KF composites with different KF contents (0, 10, 20, and 30 wt %). The tensile modulus, storage modulus and the crystallization rate of PBS in the composites were all efficiently enhanced. With the incorporation of 30% KF, the tensile modulus and storage modulus (at 40C) of the PBS/KF composite were increased by 53 and 154%, respectively, the crystallization temperature in cooling process at 10C/min from the melt was increased from 76.3 to 87.7C, and the half-time of PBS/KF composite in isothermal crystallization at 96 and 100C were reduced to 10.8% and 14.3% of that of the neat PBS, respectively. SEM analysis indicates that the adhesion between PBS and KF needs further improvement. These results signify that KF is efficient in improving the tensile modulus, storage modulus and the crystallization rate of PBS. Hence, this study provides a good option for preparing economical biodegradable composite. 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Epoxy composites reinforced by different size silica nanoparticles

Cheng-Fang Ou
Abstract Three series of epoxy/SiO2 composites, containing 0.3,7 wt % nanosized SiO2 with different specific surface area, were prepared by solution blending. The resulting composites exhibit the higher glass transition temperature (Tg) than that of pure epoxy. The Tg of composite showed a maximum increment of 35.3C by the addition of 7 wt % A300. The trade name of A300 is Aerosil 300. It is one of the fumed silica nanoparticles products of Degussa. The decomposition temperatures (Td) of composites were always higher than that of pure epoxy and showed a maximum increment of 20.8C by the addition of 5 wt % A300. The light transmittance of composites was as a function of the SiO2 content and size. The water permeability of composites decreased with increasing SiO2 content and the 7 wt % A300 composite exhibits a maximum decrement percentage of 35.6%. The Tg, Td, storage modulus, and water-vapor barrier property are as a function of the SiO2 content and size. These properties increased as the content of SiO2 increased. The finer SiO2 are more effective in increasing the Tg, Td, and water-vapor barrier property. 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]