Stone Cover (stone + cover)

Distribution by Scientific Domains


Selected Abstracts


Estimating the mean speed of laminar overland flow using dye injection-uncertainty on rough surfaces

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2001
David Dunkerley
Abstract A common method for estimating mean flow speeds in studies of surface runoff is to time the travel of a dye cloud across a measured flow path. Motion of the dye front reflects the surface flow speed, and a correction must be employed to derive a value for the profile mean speed, which is always lower. Whilst laminar flow conditions are widespread in the interrill zone, few data are available with which to establish the relationship linking surface and profile mean speeds, and there are virtually none for the flow range 100,<,Re,<,500 (Re,=,Reynolds number) which is studied here. In laboratory experiments on a glued sand board, mean flow speeds were estimated from both dye speeds and the volumetric flow relation v,=,Q/wd with d measured using a computer-controlled needle gauge at 64 points. In order to simulate conditions applicable to many dryland soils, the board was also roughened with plant litter and with ceramic tiles (to simulate surface stone cover). Results demonstrate that in the range 100,<,Re,<,500, there is no consistent relation between surface flow speeds and the profile mean. The mean relationship is v,=,0·56 vsurf, which departs significantly from the theoretical smooth-surface relation v,=,0·67 vsurf, and exhibits a considerable scatter of values that show a dependence on flow depth. Given the inapplicability of any fixed conversion factor, and the dependence on flow depth, it is suggested that the use of dye timing as a method for estimating v be abandoned in favour of precision depth measurement and the use of the relation v,=,Q/wd, at least within the laminar flow range tested. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2005
Uttam Kumar Mandal
Summary Stones on the surface of the soil enhance infiltration and protect the soil against erosion. They are often removed in modern mechanized agriculture, with unfortunate side-effects. We evaluated experimentally the influence of surface stones on infiltration, runoff and erosion under field conditions using a portable rainfall simulator on bare natural soil in semi-arid tropical India, because modernization and mechanization often lead to removal of these stones in this region. Four fields with varied cover of stones from 3 to 65% were exposed to three rainfall intensities (48.5, 89.2 and 136.8 mm hour,1). Surface stones retarded surface runoff, increased final infiltration rates, and diminished sediment concentration and soil loss. The final infiltration ranged from 26 to 83% of rainfall when the rainfall intensity was 136.8 mm hour,1. The reduction in runoff and soil erosion and increase in infiltration were more pronounced where stones rested on the soil surface than where they were buried in the surface layer. The sediment yield increased from 2 g l,1 for 64.7% stone cover with rainfall of 48.5 mm hour,1 to 70 g l,1 for 3.5% stone cover with rain falling at 136.8 mm hour,1. The soil loss rate was less than 2 t ha,1 hour,1 for the field with stone cover of 64.7% even when the rainfall intensity was increased to 136.8 mm hour,1. The effects of stones on soil loss under the varied rainfall intensities were expressed mathematically. The particles in the sediment that ran off were mostly of silt size. [source]


The contribution of stone cover to biological activity in the Negev desert, Israel

LAND DEGRADATION AND DEVELOPMENT, Issue 1 2001
I. Lahav (Lavian)
Abstract Ancient valley agriculture in the northern Negev highlands was based on the principle of directed collection of water and eroded material from the slopes and their consequent flow towards the valleys. The stones on these slopes were therefore removed and/or collected into piles known as ,grape mounds'. The aim of this study was to understand the contribution of stone cover and slope-facing to biological activity in soil. Soil samples from a depth of 0,5,mm from the soil surface were collected during the study period (December 1994,March 1996) from northern and southern hill slopes, from under limestones and between stones. Soil moisture, organic matter, chlorophyll-a and soil respiration were determined. The results obtained in field and laboratory studies demonstrated differences between the northern and southern slopes. The stone cover on the northern slope made up 33 per cent and in the southern slope 23 per cent, stone size ranging from 15,50,cm2 and 15,35,cm2, respectively. Soil moisture content varied from 12 per cent in December 1994 on both slopes to one-quarter of the initial value during the dry period. Organic matter content reached a maximal level of 14 per cent and 16 per cent on the northern and southern slopes, respectively. Values of chlorophyll-a on both the northern and southern slopes were 0.38,,g,g,1 dry soil during the wet season, decreasing to 0.05,,g,g,1 dry soil during the dry period. Soil samples from under the stones on both slopes produced high levels of CO2, ranging between 50 and 100,,g CO2,g;,1 dry soil h,1, whereas in the control samples the levels ranged between 30 and 70,,g CO2,g,1 dry soil h,1. In conclusion, the stone cover apparently plays an important role in the maintenance of biological activity through its contribution to slope biotope stability. Copyright © 2001 John Wiley & Sons, Ltd. [source]