Home About us Contact | |||
Stomatal Sensitivity (stomatal + sensitivity)
Selected AbstractsModulation of Root Signals in Relation to Stomatal Sensitivity to Root-sourced Abscisic Acid in Drought-affected PlantsJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 10 2007Huibo Ren Abstract Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely to be a result of the interactions and modulations among root signals. As a stress signal, abscisic acid (ABA) plays a central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status. pH itself can be modified by several factors, among which the chemical compositions in the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH, more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastic pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se. The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots if a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles in the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal. [source] Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grasslandPLANT CELL & ENVIRONMENT, Issue 8 2003H. MAHERALI ABSTRACT In the present study the response of stomatal conductance (gs) to increasing leaf-to-air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200,550 µmol mol,1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non-hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2. [source] Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditionsAFRICAN JOURNAL OF ECOLOGY, Issue 4 2009K. B. Mantlana Abstract C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration and leaf-to-air vapour pressure deficit gradient (Dl). Digitaria eriantha showed the largest above- and below-ground biomass, high efficiency in carbon gain under light-limiting conditions, high water use efficiency (WUE) and strong stomatal sensitivity to Dl (P = 0.002; r2 = 0.5). Panicum repens had a high aboveground biomass and attained high light saturated photosynthetic rates (Asat, 47 ,mol m,2 s,1), stomatal conductance, (gsat, 0.25 mol m,2 s,1) at relatively high WUE. Eragrostis lehmanniana had almost half the biomass of other species, and had similar Asat and gsat but were attained at lower WUE than the other species. This species also showed the weakest stomatal response to Dl (P = 0.19, r2 = 0. 1). The potential ecological significance of the contrasting patterns of biomass allocation and variations in gas exchange parameters among the species are discussed. Résumé On a fait pousser des espèces herbeuses de savane de type C4, Digitaria eriantha, Eragrostis lehmanniana et Panicum repens, dans des conditions optimales dans le but de caractériser l'allocation de leur biomasse aérienne et racinaire et la réponse de leur échange gazeux à des changements d'intensité de la lumière, de concentrations de CO2, et à un gradient déficitaire (Dl) de pression de vapeur feuille-air. D. eriantha montrait la plus grande biomasse aérienne et racinaire, une grande efficience de l'assimilation de carbone dans des conditions de luminosité limitée, une grande efficience d'utilisation de l'eau (WUE) et une forte sensibilité des stomates à Dl (P = 0,002; r2 = 0,5). P. repens avait une grande biomasse aérienne et atteignait des taux photosynthétiques élevés en lumière saturée (Asat, 47 ,mol m,2 s,1), et une conductance stomatique (gsat 0.25 mol m,2 s,1) à une WUE relativement élevée. E. lehmanniana avait une biomasse qui était presque la moitié de celle des autres espèces et avait un Asat et un gsat similaires mais qui étaient atteints à une WUE plus basse que les autres espèces. Cette espèce montrait aussi la plus faible réponse stomatique àDl (P = 0,19, r2 = 0,1). L'on discute de la signification écologique potentielle de ces schémas contrastés d'allocations de biomasse et des variations des paramètres des échanges gazeux entre les espèces. [source] Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnataPLANT CELL & ENVIRONMENT, Issue 5 2009SUSANNE VON CAEMMERER ABSTRACT To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata, which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in pCO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low pCO2. Stomata did not respond to a decreased pCO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal pCO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to pCO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low pCO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species. [source] Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grasslandPLANT CELL & ENVIRONMENT, Issue 8 2003H. MAHERALI ABSTRACT In the present study the response of stomatal conductance (gs) to increasing leaf-to-air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200,550 µmol mol,1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non-hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2. [source] Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought?PLANT CELL & ENVIRONMENT, Issue 5 2001C. Borel ABSTRACT The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild-type, a full-deficient mutant and four under-producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well-watered plants; and withholding irrigation on pot-grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA-deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild-type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl. [source] |