Stock Biomass (stock + biomass)

Distribution by Scientific Domains

Kinds of Stock Biomass

  • spawning stock biomass


  • Selected Abstracts


    ORIGINAL ARTICLE: Implications of fisheries-induced evolution for stock rebuilding and recovery

    EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 3 2009
    Katja Enberg
    Abstract Worldwide depletion of fish stocks has led fisheries managers to become increasingly concerned about rebuilding and recovery planning. To succeed, factors affecting recovery dynamics need to be understood, including the role of fisheries-induced evolution. Here we investigate a stock's response to fishing followed by a harvest moratorium by analyzing an individual-based evolutionary model parameterized for Atlantic cod Gadus morhua from its northern range, representative of long-lived, late-maturing species. The model allows evolution of life-history processes including maturation, reproduction, and growth. It also incorporates environmental variability, phenotypic plasticity, and density-dependent feedbacks. Fisheries-induced evolution affects recovery in several ways. The first decades of recovery were dominated by demographic and density-dependent processes. Biomass rebuilding was only lightly influenced by fisheries-induced evolution, whereas other stock characteristics such as maturation age, spawning stock biomass, and recruitment were substantially affected, recovering to new demographic equilibria below their preharvest levels. This is because genetic traits took thousands of years to evolve back to preharvest levels, indicating that natural selection driving recovery of these traits is weaker than fisheries-induced selection was. Our results strengthen the case for proactive management of fisheries-induced evolution, as the restoration of genetic traits altered by fishing is slow and may even be impractical. [source]


    Variation in abundance of Norwegian spring-spawning herring (Clupea harengus, Clupeidae) throughout the 20th century and the influence of climatic fluctuations

    FISH AND FISHERIES, Issue 3 2000
    R. Toresen
    A long-term (1907,98) virtual population analysis (VPA) was made for Norwegian spring-spawning herring (NSSH), which is a huge pelagic fish stock in the north-east Atlantic. It shows that this herring stock has had large fluctuations during the last century; these fluctuations have mainly been determined by variations in the temperature of the inflowing water masses to the region. The spawning stock biomass (SSB) increased from a rather low level in the early years of this century and reached a high level of around 14 million tons by 1930. The spawning stock biomass then decreased to a level of around 10 million tons by 1940, but increased again to a record high level of 16 million tons by 1945. The stock then started to decrease and during the next 20-year period fell to a level of less than 50 000 tons by the late 1960s. Through the 1970s and 1980s, the stock slowly recovered and after the recruitment of strong year classes in 1983 and 1990,1992 the stock recovered to a spawning stock biomass of about 10 million tons. The long-term fluctuation in spawning stock biomass is caused by variations in the survival of recruits. It is found that the long-term changes in spawning stock abundance are highly correlated with the long-term variations in the mean annual temperature of the inflowing Atlantic water masses (through the Kola section) into the north-east Atlantic region. The recruitment is positively correlated with the average temperature in the Kola section in the winter months, January,April, which indicates that environmental factors govern the large-scale fluctuations in production for this herring stock. [source]


    Seasonal and long-term changes in fishing depth of Lake Constance whitefish

    FISHERIES MANAGEMENT & ECOLOGY, Issue 5 2010
    G. THOMAS
    Abstract, The ecosystem of Lake Constance in central Europe has undergone profound modifications over the last six decades. Seasonal and inter-annual changes in the vertical distribution patterns of whitefish were examined and related to changes in biotic and abiotic gradients. Between 1958 and 2007, the average fishing depth in late summer and autumn was related to two factors influencing food supply of whitefish , lake productivity and standing stock biomass. In years with low food supply, whitefish were harvested from greater depths, where temperatures were up to 4 °C lower. The whitefish's distribution towards colder water might be a bioenergetic optimisation behaviour whereby fish reduce metabolic losses at lower temperatures, or it may result from a reassessment of habitat preference under conditions of limited food supply, according to the ideal free distribution theory. [source]


    Did lack of spawners cause the collapse of the European eel, Anguilla anguilla?

    FISHERIES MANAGEMENT & ECOLOGY, Issue 6 2003
    W. Dekker
    Abstract Since the 1980s, a 90% decline in recruitment of European eel, Anguilla anguilla (L.), has occurred across most of Europe. Whether the continental stock has equally declined is uncertain. This study compiles available landings statistics since the beginning of the 20th century and identifies trends over time and space, using a statistical model that takes varying levels of reporting into account. Landings in the pre-1940s reached over 40 000 tonnes yr,1, declined during World War II, rose to a peak of 40 000 tonnes yr,1 in the 1960s (coincident with a peak in re-stocking) and dropped to an all time low of <20 000 tonnes yr,1 in the 1990s. The decline in recruitment since the early 1980s was preceded by a decline in landings two or more decades earlier, indicating a decline of the continental stock. Considering the continental stock and the spawning stock must have declined in parallel, insufficient spawning stock biomass might have caused the recruitment collapse currently observed. [source]


    Temperature-dependent stock-recruitment model for walleye pollock (Theragra chalcogramma) around northern Japan

    FISHERIES OCEANOGRAPHY, Issue 6 2007
    TETSUICHIRO FUNAMOTO
    Abstract Changes in fish year-class strength have been attributed to year-to-year variability in environmental conditions and spawning stock biomass (SSB). In particular, sea temperature has been shown to be linked to fish recruitment. In the present study, I examined the relationship between sea surface temperature (SST), SSB and recruitment for two stocks of walleye pollock (Theragra chalcogramma) around northern Japan [Japanese Pacific stock (JPS) and northern Japan Sea stock (JSS)] using a temperature-dependent stock-recruitment model (TDSRM). The recruitment fluctuation of JPS was successfully reproduced by the TDSRM with February and April SSTs, and February SST was a better environmental predictor than April SST. In addition, the JPS recruitment was positively related to February SST and negatively to April SST. The JSS recruitment modeled by the TDSRM incorporating February SST was also consistent with the observation, whereas the relationship between recruitment and February SST was negative, that is the opposite trend to JPS. These findings suggest that SST in February is important as a predictor of recruitment for both stocks, and that higher and lower SSTs in February act favorably on the recruitment of JPS and JSS respectively. Furthermore, Ricker-type TDSRM was not selected for either of the stocks, suggesting that the strong density-dependent effect as in the Ricker model does not exist for JPS and JSS. I formulate hypotheses to explain the links between SST and recruitment, and note that these relationships should be considered in any future attempts to understand the recruitment dynamics of JPS and JSS. [source]


    Long-term trends in fish recruitment in the north-east Atlantic related to climate change

    FISHERIES OCEANOGRAPHY, Issue 4 2007
    THOMAS BRUNEL
    Abstract This study investigates the temporal correspondence between the main patterns of recruitment variations among north-east Atlantic exploited fish populations and large-scale climate and temperature indices. It is of primary importance to know what changes in fish stock productivity can be expected in response to climate change, to design appropriate management strategies. The dominant patterns of recruitment variation were extracted using a standardized principal component analysis (PCA). The first principal component (PC) was a long-term decline, with a stepwise change occurring in 1987. A majority of Baltic Sea, North Sea, west of Scotland and Irish Sea populations, especially the gadoids, have followed this decreasing trend. On the contrary, some herring populations and the populations of boreal ecosystems have followed an opposite increasing trend. The dominant signal in north-east Atlantic sea surface temperature, also extracted by a PCA, was highly correlated with the increase in the Northern Hemisphere Temperature anomaly, which is considered to be an index of global warming. The first component of recruitment was inversely correlated with these changes in regional and global temperature. The second PC of recruitment was a decadal scale oscillation, which was not correlated with climate indicators. The analysis of correlations between population recruitment and local temperature also indicated that the dominant pattern of recruitment variation may be related to an effect of global warming. The influence of fishing on recruitment, via its effect on the spawning stock biomass (SSB), was also investigated by the analysis of correlations between fishing mortality, SSB and recruitment. Results indicate that fishing can be another factor explaining recruitment trends, probably acting in combination with the effect of climate, but cannot explain alone the patterns of recruitment variation found here. [source]


    Spawning habitat and daily egg production of sardine (Sardina pilchardus) in the eastern Mediterranean

    FISHERIES OCEANOGRAPHY, Issue 4 2006
    S. SOMARAKIS
    Abstract Spawning habitats of two eastern Mediterranean sardine, Sardina pilchardus (Walbaum, 1792), stocks (coastal waters of central Aegean and Ionian Seas) are characterized from daily egg production method (DEPM) surveys conducted during the peak of the spawning period. The latter occurs earlier in the Aegean Sea (December) than in the less-productive Ionian Sea (February). Single-parameter quotient analysis showed that the preferred bottom depth for spawning was 40,90 m in both areas but sardine selected sites of increased zooplankton in the Aegean Sea during December and increased fluorescence in the Ionian Sea during February. Estimates of daily egg production (P) and spawning stock biomass (B) were about four times lower for the Ionian Sea (P = 7.81 eggs m,2, B = 3652 tonnes) than the Aegean Sea (P = 27.52 eggs m,2, B = 16 174 tonnes). We suggest that zooplankton biomass might not be sufficient to support sardine reproduction in the highly oligotrophic Ionian Sea where the very small sardine stock may rely on the late-winter phytoplankton bloom. Actively selecting sites with increased zooplankton or phytoplankton and feeding plasticity (the well-known switching from selective particle feeding to non-selective filter feeding in sardines) are interpreted as adaptations to grow and reproduce optimally at varying prey conditions. Despite differences in temperature and productivity regimes, reproductive performance of sardine in the Ionian Sea was very similar to that in the Aegean Sea during the peak of the spawning period. In comparing adult parameters from DEPM applications to Sardina and Sardinops stocks around the world, a highly significant linear relation emerged between mean batch fecundity (F) and mean weight of mature female (W, g) (F = 0.364W, r2 = 0.98). The latter implies that, during the peak of the spawning period, mean relative batch fecundity (eggs g,1) of sardine is fairly constant in contrasting ecosystems around the world. [source]


    Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management

    FISHERIES OCEANOGRAPHY, Issue 4 2005
    AKIHIKO YATSU
    Abstract We compared a wide range of environmental data with measures of recruitment and stock production for Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus to examine factors potentially responsible for fishery regimes (periods of high or low recruitment and productivity). Environmental factors fall into two groups based on principal component analyses. The first principal component group was determined by the Pacific Decadal Oscillation Index and was dominated by variables associated with the Southern Oscillation Index and Kuroshio Sverdrup transport. The second was led by the Arctic Oscillation and dominated by variables associated with Kuroshio geostrophic transport. Instantaneous surplus production rates (ISPR) and log recruitment residuals (LNRR) changed within several years of environmental regime shifts and then stabilized due, we hypothesize, to rapid changes in carrying capacity and relaxation of density dependent effects. Like ISPR, LNRR appears more useful than fluctuation in commercial catch data for identifying the onset of fishery regime shifts. The extended Ricker models indicate spawning stock biomass and sea surface temperatures (SST) affect recruitment of sardine while spawning stock biomass, SST and sardine biomass affect recruitment of chub mackerel. Environmental conditions were favorable for sardine during 1969,87 and unfavorable during 1951,67 and after 1988. There were apparent shifts from favorable to unfavorable conditions for chub mackerel during 1976,77 and 1985,88, and from unfavorable to favorable during 1969,70 and 1988,92. Environmental effects on recruitment and surplus production are important but fishing effects are also influential. For example, chub mackerel may have shifted into a new favorable fishery regime in 1992 if fishing mortality had been lower. We suggest that managers consider to shift fishing effort in response to the changing stock productivity, and protect strong year classes by which we may detect new favorable regimes. [source]


    The influence of life history dynamics and environment on the determination of year class strength in North Sea herring (Clupea harengus L.)

    FISHERIES OCEANOGRAPHY, Issue 4 2005
    R. D. M. NASH
    Abstract The inter-annual variability in year class strength (1976,2000) of North Sea herring (Clupea harengus) was investigated using Paulik diagrams based on survey data and Virtual Population Analysis. The herring life cycle was split into five stages: spawning stock biomass (SSB), egg production, larvae, fish with 0 winter rings on the otolith (0-wr), 1-wr and 2-wr. Surveys were used as indices and Paulik analysis revealed relationships between stages. In 80% of the years, year class strength reflected SSB. Poorer than expected year classes were determined during the larva to 0-wr phase, whilst stronger than expected year classes were apparently determined during the 0-wr to 1-wr stage. There was no clear relationship between survival of young stages of herring and the abundance of Calanus finmarchicus but the year class strength of 0-wr and 1-wr had a negative relationship to bottom water temperature. Lower sea water temperatures in the North Sea are associated with higher Calanus abundance. The analysis shows that the strength of aberrant year classes of North Sea herring is determined between the pelagic larval and the juvenile stages. [source]


    Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution

    JOURNAL OF APPLIED ECOLOGY, Issue 3 2002
    J. K. Pinnegar
    Summary 1The intensive exploitation of fish communities often leads to substantial reductions in the abundance of target species, with ramifications for the structure and stability of the ecosystem as a whole. 2We explored changes in the mean trophic level of the Celtic Sea (ICES divisions VII f,j) fish community using commercial landings, survey data and estimates of trophic level derived from the analysis of nitrogen stable isotopes. 3Our analyses showed that there has been a significant decline in the mean trophic level of survey catches from 1982 to 2000 and a decline in the trophic level of landings from 1946 to 1998. 4The decline in mean trophic level through time resulted from a reduction in the abundance of large piscivorous fishes and an increase in smaller pelagic species which feed at a lower trophic level. 5Similar patterns of decline in the trophic level of both catches and landings imply that there have been substantial changes in the underlying structure of the Celtic Sea fish community and not simply a change in fishery preferences. 6We suggest that the reported changes in trophic structure result from reductions in the spawning stock biomass of traditional target species associated with intensive fishing, together with long-term climate variability. 7The relative distribution of fish market prices has changed significantly over the past 22 years, with high trophic level species experiencing greater price rises than lower trophic level species. 8Although decreased abundance of high trophic level species will ultimately have negative economic consequences, the reduction in mean trophic level of the fish community as a whole may allow the system to sustain higher fishery yields. 9Management objectives in this fishery will depend on the relative values that society attaches to economic profit and protein production. [source]