Stochastic Matrix Models (stochastic + matrix_models)

Distribution by Scientific Domains


Selected Abstracts


Stochastic matrix models for conservation and management: a comparative review of methods

ECOLOGY LETTERS, Issue 3 2001
John Fieberg
Stochastic matrix models are frequently used by conservation biologists to measure the viability of species and to explore various management actions. Models are typically parameterized using two or more sets of estimated transition rates between age/size/stage classes. While standard methods exist for analyzing a single set of transition rates, a variety of methods have been employed to analyze multiple sets of transition rates. We review applications of stochastic matrix models to problems in conservation and use simulation studies to compare the performance of different analytic methods currently in use. We find that model conclusions are likely to be robust to the choice of parametric distribution used to model vital rate fluctuations over time. However, conclusions can be highly sensitive to the within-year correlation structure among vital rates, and therefore we suggest using analytical methods that provide a means of conducting a sensitivity analysis with respect to correlation parameters. Our simulation results also suggest that the precision of population viability estimates can be improved by using matrix models that incorporate environmental covariates in conjunction with experiments to estimate transition rates under a range of environmental conditions. [source]


Life history and population size variability in a relict plant.

DIVERSITY AND DISTRIBUTIONS, Issue 1 2008
Different routes towards long-term persistence
ABSTRACT A central tenet of conservation biology is that population size affects the persistence of populations. However, many narrow endemic species combine small population ranges and sizes with long persistence, thereby challenging this tenet. I examined the performance of three different-sized populations of Petrocoptis pseudoviscosa (Caryophyllaceae), a palaeoendemic rupicolous herb distributed along a small valley in the Spanish Pyrenees. Reproductive and demographic parameters were recorded over 6 years, and deterministic and stochastic matrix models were constructed to explore population dynamics and extinction risk. Populations differed greatly in structure, fecundity, recruitment, survival rate, and life span. Strong differentiation in life-history parameters and their temporal variability resulted in differential population vulnerability under current conditions and simulated global changes such as habitat fragmentation or higher climatic fluctuations. This study provides insights into the capacity of narrow endemics to survive both at extreme environmental conditions and at small population sizes. When dealing with species conservation, the population size,extinction risk relationship may be too simplistic for ancient, ecologically restricted organisms, and some knowledge of life history may be most important to assess their future. [source]


Stochastic matrix models for conservation and management: a comparative review of methods

ECOLOGY LETTERS, Issue 3 2001
John Fieberg
Stochastic matrix models are frequently used by conservation biologists to measure the viability of species and to explore various management actions. Models are typically parameterized using two or more sets of estimated transition rates between age/size/stage classes. While standard methods exist for analyzing a single set of transition rates, a variety of methods have been employed to analyze multiple sets of transition rates. We review applications of stochastic matrix models to problems in conservation and use simulation studies to compare the performance of different analytic methods currently in use. We find that model conclusions are likely to be robust to the choice of parametric distribution used to model vital rate fluctuations over time. However, conclusions can be highly sensitive to the within-year correlation structure among vital rates, and therefore we suggest using analytical methods that provide a means of conducting a sensitivity analysis with respect to correlation parameters. Our simulation results also suggest that the precision of population viability estimates can be improved by using matrix models that incorporate environmental covariates in conjunction with experiments to estimate transition rates under a range of environmental conditions. [source]


Heterogeneous grazing causes local extinction of edible perennial shrubs: a matrix analysis

JOURNAL OF APPLIED ECOLOGY, Issue 2 2001
L.P. Hunt
Summary 1Population modelling and field measurements of births, growth and deaths were used to investigate the long-term change in abundance of Atriplex vesicaria (Chenopodiaceae), a long-lived, palatable, perennial shrub, under sheep grazing. Of particular interest was whether A. vesicaria is at risk of being eliminated throughout grazed paddocks when the recommended practice of continuous grazing at conservative stocking rates is employed. 2Time-invariant matrix population models indicated that the A. vesicaria population was in decline over much of the study paddock, but the rate of decline was greatest nearer to the water point (population growth rate , , 0·8). Time-varying stochastic matrix models projected that the A. vesicaria population would become locally extinct at most sites up to approximately 2200 m from water, occurring first closer to water (within 12,29 years). The population was stable (i.e. , , 1) at sites greater than 2200 m from water over the projection period of 100 years. 3Decreases in adult survival and recruitment made the largest contributions to reductions in the population growth rate. However, there were spatial patterns centred on the water point in the degree to which particular demographic processes contributed to these reductions, because of a grazing gradient and the differential sensitivity of demographic processes to grazing. Thus decreases in recruitment contributed to reductions in the population growth rate at greater distances. Such responses, together with the sensitivity of the population growth rate to these processes, determined the spatial pattern in population growth. 4The results suggest that piospheres (i.e. the zone of impact) continue to expand over many years under set-stocking so that the area around the water point that is devoid of A. vesicaria becomes larger. The process of expansion appears to first involve the inhibition of recruitment, followed by eventual mortality of established shrubs. 5The large contribution of adult survival to the population growth rate in A. vesicaria suggests that minimizing the mortality of established adults should be a priority for management. This is likely to involve resting from grazing at critical times such as during extended dry periods. This may also permit increased levels of recruitment during subsequent moister periods. [source]


Which demographic traits determine population growth in the invasive brown seaweed Sargassum muticum?

JOURNAL OF ECOLOGY, Issue 4 2009
Aschwin Engelen
Summary 1Life-history traits commonly associated with plant invasiveness are vegetative reproduction or r -selected traits such as short generation times and high rates of reproduction and individual growth. 2We used matrix modelling to assess which demographic traits are important for the population growth of an invasive seaweed lacking vegetative reproduction and whether demographic and life-history strategies shift with increased dominance of the invader. The vital rates of one of the most successful invading seaweeds, Sargassum muticum, were investigated monthly for 2 years in intertidal pools dominated by the native brown seaweed Cystoseira humilis and by S. muticum, respectively. In order to speculate about the demographic mechanisms that determine invasiveness of S. muticum, and as the study sites were recently colonized, we assumed that C. humilis and S. muticum pools are proxies for early and late phases of invasion, respectively. 3Both deterministic and stochastic matrix models showed positive rates of population growth, and rates were significantly higher in the pools dominated by S. muticum than in the ones dominated by C. humilis, indicating demographic changes with invader dominance. The variability of population growth rates and of reproductive and elasticity values of S. muticum was higher in the pools dominated by C. humilis, suggesting invader-driven stabilization of environmental conditions. Generation times of the species increased with invader dominance, supporting invader-stabilized environmental conditions. 4Elasticity analyses revealed that the most important demographic trait for population growth rate at both levels of invader dominance was the persistence of the non-fertile adult fronds rather than reproduction or growth. No major shifts in the life-history strategy of S. muticum between levels of invader dominance were detected. 5Synthesis. This study suggests that the invasiveness of S. muticum, a perennial invader without vegetative reproduction, relies on K - rather than r -selected traits and without drastic changes in life-history strategy between phases of invasion. [source]


Which traits promote persistence of feral GM crops?

OIKOS, Issue 1 2005
Part 1:implications of environmental stochasticity
Transgenes in plants affect life history traits including seed survival and germination. With stochastic matrix models we predict population-level consequences of transgene induced life history changes. We assess systematically which changes in life history traits, resulting from genetic modification, may increase the risk of invasion and persistence of feral crops or increase fitness in case of introgression from arable fields into conspecific, feral populations. We apply our method to feral populations of oilseed rape. Like many annual weeds, oilseed rape depends critically on disturbance; in undisturbed habitats it is generally outcompeted by perennials. The associated inherent variability and unpredictability render deterministic models inappropriate. With a stochastic matrix model we study population growth rate, elasticities and quasi-extinction times. Our results indicate that changes in survival in the seed bank impact population growth and persistence most. Less important are dormancy, fecundity and seedling survival. The predicted distribution of extinction times is highly skewed, with some patches persisting for decades. [source]