Square Section (square + section)

Distribution by Scientific Domains


Selected Abstracts


Growth Direction and Cross-Sectional Study of Silicon Nanowires,

ADVANCED MATERIALS, Issue 7-8 2003
C.-P. Li
Cross-sectional samples of silicon nanowires (SiNWs) are examined using transmission electron microscopy. The cross-sections are bounded by well-defined low-index crystallographic facets of various shapes (e.g., the square section in the Figure, 50 nm edge) and characterized by shape-dependent growth directions, with ,112, and ,110, predominating. Both shape and growth direction are consistent with surface energy considerations and growth mechanisms. [source]


Bonding strength between a hard chairside reline resin and a denture base material as influenced by surface treatment

JOURNAL OF ORAL REHABILITATION, Issue 12 2001
C. R. Leles
Direct relining of dentures made with hard chairside reline resins is faster than laboratory-processed reline systems and the patient is not without the prosthesis for the time necessary to perform the laboratory procedures. However, a weak bond between the autopolymerizing acrylic reline resins and the denture base material has been observed. This study evaluated the effect of six different surface treatments on the bond strength between a hard chairside reline acrylic resin and a heat-cured acrylic resin. Specimens of the heat-cured acrylic resin were divided into seven groups. One of these groups remained intact. In the other groups, a 10-mm square section was removed from the centre of each specimen. The bonding surfaces were then treated with (i) methyl methacrylate monomer, (ii) isobutyl methacrylate monomer, (iii) chloroform, (iv) acetone, (v) experimental adhesive and (vi) no surface treatment , control group. Kooliner acrylic resin was packed into the square sections and polymerized. The bonding strength was evaluated by a three-point loading test. The results were submitted to one-way analysis of variance (ANOVA) followed by a Tukey multiple range test at a 5% level of significance. No significant difference was found between the surface treatment with Lucitone 550 monomer or chloroform, but both were stronger than the majority of the other groups. The bond strength provided by all the surface treatments was lower than that of the intact heat-cured resin. [source]


Protein partitioning and transport in supported cationic acrylamide-based hydrogels

AICHE JOURNAL, Issue 5 2003
Shawn M. Russell
The partitioning and transport of myoglobin in cationic, acrylamide-based hydrogels are studied by a microscopic visualization method. Homogeneous cationic gels are synthesized inside fused-silica capillaries with a square section, which allow a direct determination of protein concentration profiles during transient adsorption and desorption. Diffuse, self-similar profiles are observed and used to determine the equilibrium protein binding capacity and the protein diffusivity in the gel. Mass-transfer rates are found to be essentially independent of the external solution concentration, but to vary dramatically with the gel polymer concentration. A Fickian diffusion model with a flux based on the adsorbed-phase concentration gradient is consistent with the experimentally determined concentration profiles for both positive and negative protein concentration steps. The equilibrium and rate parameters determined for the capillary-supported gels also compare favorably with those obtained from macroscopic measurements using composite ion-exchange media comprising similar gels held within the pores of porous silica particles. [source]


Rubidium dimolybdate, Rb2Mo2O7, and caesium dimolybdate, Cs2Mo2O7

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2006
Zoya A. Solodovnikova
The crystal structures of dirubidium hepta­oxodimolybdate, Rb2Mo2O7, and dicaesium hepta­oxodimolybdate, Cs2Mo2O7, in the space groups Ama2 and P21/c, respectively, have been determined for the first time by single-crystal X-ray diffraction. The structures represent two novel structure types of monovalent ion dimolybdates, A2Mo2O7 (A = alkaline elements, NH4, Ag or Tl). In the structure of Rb2Mo2O7, Mo atoms are on a twofold axis, on a mirror plane and in a general position. One of the Rb atoms lies on a twofold axis, while three others are on mirror planes. Two O atoms attached to the Mo atom on a mirror plane are located on the same plane. Rubidium dimolybdate contains a new kind of infinite Mo,O chain formed from linked MoO4 tetra­hedra and MoO6 octa­hedra alternating along the a axis, with two terminal MoO4 tetra­hedra sharing corners with each octa­hedron. The chains stack in the [001] direction to form channels of an approximately square section filled by ten-coordinate Rb ions. Seven- and eight-coordinate Rb atoms are located between chains connected by a c translation. In the structure of Cs2Mo2O7, all atoms are in general positions. The MoO6 octa­hedra share opposite corners to form separate infinite chains running along the c axis and strengthened by bridging MoO4 tetra­hedra. The same Mo,O polyhedral chain occurs in the structure of Na2Mo2O7. Eight- to eleven-coordinate Cs atoms fill the space between the chains. The atomic arrangement of caesium dimolybdate has an ortho­rhom­bic pseudosymmetry that suggests a possible phase transition P21/c,Pbca at elevated temperatures. [source]


Bonding strength between a hard chairside reline resin and a denture base material as influenced by surface treatment

JOURNAL OF ORAL REHABILITATION, Issue 12 2001
C. R. Leles
Direct relining of dentures made with hard chairside reline resins is faster than laboratory-processed reline systems and the patient is not without the prosthesis for the time necessary to perform the laboratory procedures. However, a weak bond between the autopolymerizing acrylic reline resins and the denture base material has been observed. This study evaluated the effect of six different surface treatments on the bond strength between a hard chairside reline acrylic resin and a heat-cured acrylic resin. Specimens of the heat-cured acrylic resin were divided into seven groups. One of these groups remained intact. In the other groups, a 10-mm square section was removed from the centre of each specimen. The bonding surfaces were then treated with (i) methyl methacrylate monomer, (ii) isobutyl methacrylate monomer, (iii) chloroform, (iv) acetone, (v) experimental adhesive and (vi) no surface treatment , control group. Kooliner acrylic resin was packed into the square sections and polymerized. The bonding strength was evaluated by a three-point loading test. The results were submitted to one-way analysis of variance (ANOVA) followed by a Tukey multiple range test at a 5% level of significance. No significant difference was found between the surface treatment with Lucitone 550 monomer or chloroform, but both were stronger than the majority of the other groups. The bond strength provided by all the surface treatments was lower than that of the intact heat-cured resin. [source]


Silica as a shock index in shergottites: A cathodoluminescence study

METEORITICS & PLANETARY SCIENCE, Issue 7 2005
Hasnaa CHENNAOUI AOUDJEHANE
Determining its structural state as either silica glass, quartz, cristobalite, tridymite, coesite, stishovite, or post-stishovite could provide informations about their shock history. The purpose of this work is to assess the shock intensity in shergottites using two spectroscopic methods. On a conventional polished section, a scanning electron microscope (SEM) enables us to study the cathodoluminescence (CL) of silica at variable magnification. The results were crosschecked by systematic Raman spectroscopy of the selected areas. CL spectra differ substantially from one another and enable separating stishovite, high and low pressure silica glass, quartz, and cristobalite. We studied a set of five shergottites: Northwest Africa (NWA) 480, NWA 856, Zagami, Shergotty, and Los Angeles. Stishovite is common in Shergotty, Zagami, NWA 856, and NWA 480 and absent in the studied section of Los Angeles. High-pressure glass is very common, particularly in close association with stishovite. According to the textural relationship, it may be a product of the retromorphosis (amorphization during decompression) of stishovite. Large stishovite areas result from the transformation of preexisting low-pressure silica crystals, while needles result from the high-pressure transformation of pyroxene to glass (melt) and silica. In the latter case, they are found in melt pockets and represent a small fraction of areas of overall pyroxene composition. Needles exhibit square sections of about 1 ,m. Silica spots identical to those described previously as post-stishovite are found in Shergotty, Zagami, NWA 480, and NWA 856. At present, the spectroscopic distinction of post-stishovite from stishovite is difficult. Post-stishovite is destroyed under the Raman beam, and CL spectra are possible mixtures of several phases (e.g., glass and post-stishovite). It is concluded that the shock intensity is highly heterogeneous, and the pressure probably exceeded 60 GPa in all shergottites studied here. [source]


Structural study of ferroelectric and paraelectric phases in PbK2LiNb5O15

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 11 2004
Y. Gagou
Abstract The structures of PbK2LiNb5O15 showing the ferroelectricity below about 640 K have been studied in the paraelectric and ferroelectric phases by means of synchrotron X-ray powder diffraction. The data are analyzed with a Rietveld refinement method. It is found that the paraelectric structure and the ferroelectric one are of tetragonal and orthorhombic symmetry with P4/mbm and Pba2, respectively. The Pba2 structure gives a polar displacement along c -axis, whose direction is consistent with that deduced from dielectric measurements. The refined chemical occupancies of the cations Pb, K and Nb give the site-situation of these ions in the tunnels with square sections and pentagonal sections in each phase. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]