Home About us Contact | |||
Squalene Synthase (squalene + synthase)
Selected AbstractsSqualene synthase: a critical enzyme in the cholesterol biosynthesis pathwayCLINICAL GENETICS, Issue 1 2009R Do High levels of plasma low-density lipoprotein cholesterol (LDL-C) are a significant risk factor for heart disease. Statins (3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors) have been extensively used to treat high-plasma LDL-C levels and are effective in preventing heart disease. However, statins can be associated with adverse side effects in some patients and do not work effectively in others. As an alternative to statins, the development of cholesterol-lowering agents that directly inhibit squalene synthase have shown promise. Clinical studies have shown that squalene synthase inhibitors are effective in lowering plasma levels of total cholesterol and LDL-C. Squalene synthase plays an important role in the cholesterol biosynthesis pathway as it is responsible for the flow of metabolites into either the sterol or the non-sterol branches of the pathway. In addition, variants of the squalene synthase gene appear to modulate plasma cholesterol levels in human populations and therefore may be linked to cardiovascular disease. In this review, we examine squalene synthase and the gene that codes for it (farnesyldiphosphate farnesyltransferase 1). In particular, we investigate their role in the regulation of cellular and plasma cholesterol levels, including data that suggest that squalene synthase may be involved in the etiology of hypercholesterolemia. [source] The Intracellular Target for the Antiresorptive Aminobisphosphonate Drugs in Dictyostelium discoideum Is the Enzyme Farnesyl Diphosphate Synthase,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2000Joanna E. Grove Abstract Aminobisphosphonate (aBP) drugs inhibit osteoclast-mediated bone resorption and also growth of amoebas of Dictyostelium discoideum apparently by interaction with the same intracellular target. Identification of the target in Dictyostelium therefore could also identify the target in osteoclasts. The aBPs (100 ,M alendronate and 30 ,M YM-175) inhibited conversion of [14C]mevalonate into sterols by cultures of Dictyostelium amoebas. One of three enzymes (isopentenyl diphosphate [IDP] isomerase, farnesyl diphosphate [FDP] synthase, and squalene synthase) appeared to be the target for this inhibition because conversion of [14C]IDP into squalene, the immediate precursor for sterol biosynthesis, was inhibited in extracts of wild-type amoebas by alendronate (IC50 = 75 nM) or risedronate (IC50 = 30 nM) whereas, when the extract had been prepared from amoebas of strains selected for having partial resistance to the growth-inhibitory effects of alendronate (strain MR102) or risedronate (strain RB101), the values of IC50 were increased to 700 nM for alendronate (MR102 extract) or 130 nM for risedronate (RB101 extract). Neither IDP isomerase nor squalene synthase was inhibited significantly by alendronate or risedronate but both of these aBP drugs, and all others tested, inhibited FDP synthase. Determination of the nucleotide sequences of complementary DNAs (cDNAs) encoding FDP synthase in the wild-type and aBP-resistant strains of Dictyostelium indicated that there had been no changes in the amino acid sequence of the enzyme in the mutant strains. However, both mutant strains overproduce FDP synthase. It is concluded that FDP synthase is the intracellular target for the aBP drugs. (J Bone Miner Res 2000;15:971,981) [source] Recovery of E,E -farnesol from cultures of yeast erg9 mutants: Extraction with polymeric beads and purification by normal-phase chromatographyBIOTECHNOLOGY PROGRESS, Issue 4 2009Linsheng Song Abstract Saccharomyces cerevisiae erg9 mutants blocked at squalene synthase require ergosterol for growth and produce E,E-farnesol. Typically, at least half the amount of farnesol remains cell associated. Practically insoluble in water, farnesol can be extracted from production cultures of the erg9 mutants using either methanol/hexane or poly(styrene-co-divinylbenzene) beads. The first method consumes more solvents and requires centrifugation to clear an interface emulsion. The second method uses 50% less solvent and the beads can be used repeatedly for extraction. The solvent-free crude extract from the beads extraction contained higher concentration of farnesol (76,77%) than that from the solvent extraction (61,65%). Farnesol was obtained after normal-phase chromatography in high overall recovery (94%) and purity (99%). © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathwayCLINICAL GENETICS, Issue 1 2009R Do High levels of plasma low-density lipoprotein cholesterol (LDL-C) are a significant risk factor for heart disease. Statins (3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors) have been extensively used to treat high-plasma LDL-C levels and are effective in preventing heart disease. However, statins can be associated with adverse side effects in some patients and do not work effectively in others. As an alternative to statins, the development of cholesterol-lowering agents that directly inhibit squalene synthase have shown promise. Clinical studies have shown that squalene synthase inhibitors are effective in lowering plasma levels of total cholesterol and LDL-C. Squalene synthase plays an important role in the cholesterol biosynthesis pathway as it is responsible for the flow of metabolites into either the sterol or the non-sterol branches of the pathway. In addition, variants of the squalene synthase gene appear to modulate plasma cholesterol levels in human populations and therefore may be linked to cardiovascular disease. In this review, we examine squalene synthase and the gene that codes for it (farnesyldiphosphate farnesyltransferase 1). In particular, we investigate their role in the regulation of cellular and plasma cholesterol levels, including data that suggest that squalene synthase may be involved in the etiology of hypercholesterolemia. [source] |