Spontaneous Ca2+ Waves (spontaneous + ca2+_wave)

Distribution by Scientific Domains


Selected Abstracts


Spontaneous Ca2+ Waves in Rabbit Corpus Cavernosum: Modulation by Nitric Oxide and cGMP

THE JOURNAL OF SEXUAL MEDICINE, Issue 4 2009
Gerard P. Sergeant PhD
ABSTRACT Introduction., Detumescent tone and subsequent relaxation by nitric oxide (NO) are essential processes that determine the erectile state of the penis. Despite this, the mechanisms involved are incompletely understood. It is often assumed that the tone is associated with a sustained high cytosolic Ca2+ level in the corpus cavernosum smooth muscle cells, however, an alternative possibility is that oscillatory Ca2+ signals regulate tone, and erection occurs as a result of inhibition of Ca2+ oscillations by NO. Aims., The aim of this study is to determine if smooth muscle cells displayed spontaneous Ca2+ oscillations and, if so, whether these were regulated by NO. Methods., Male New Zealand white rabbits were euthanized and smooth muscle cells were isolated by enzymatic dispersal for confocal imaging of intracellular Ca2+ (using fluo-4AM) and patch clamp recording of spontaneous membrane currents. Thin tissue slices were also loaded with fluo-4AM for live imaging of Ca2+. Main Outcome Measure., Cytosolic Ca2+ was measured in isolated smooth muscle cells and tissue slices. Results., Isolated rabbit corpus cavernosum smooth muscle cells developed spontaneous Ca2+ waves that spread at a mean velocity of 65 µm/s. Dual voltage clamp/confocal recordings revealed that each of the Ca2+ waves was associated with an inward current typical of the Ca2+ -activated Cl - currents developed by these cells. The waves depended on an intact sarcoplasmic reticulum Ca2+ store, as they were blocked by cyclopiazonic acid (Calbiochem, San Diego, CA, USA) and agents that interfere with ryanodine receptors and IP3 -mediated Ca2+ release. The waves were also inhibited by an NO donor (diethylamine NO; Tocris Bioscience, Bristol, Avon, UK), 3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole (YC-1) (Alexis Biochemicals, Bingham, Notts, UK), 8-bromo-cyclic guanosine mono-phosphate (Tocris), and sildenafil (Viagra, Pfizer, Sandwich, Kent, UK). Regular Ca2+ oscillations were also observed in whole tissue slices where they were clearly seen to precede contraction. This activity was also markedly inhibited by sildenafil, suggesting that it was under NO regulation. Conclusions., These results provide a new basis for understanding detumescent tone in the corpus cavernosum and its inhibition by NO. Sergeant GP, Craven M, Hollywood MA, McHale NG, and Thornbury KD. Spontaneous Ca2+ waves in rabbit corpus cavernosum: Modulation by nitric oxide and cGMP. J Sex Med **;**:**,**. [source]


Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethra

THE JOURNAL OF PHYSIOLOGY, Issue 19 2008
Gerard P. Sergeant
Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit pacemaker activity that results from spontaneous Ca2+ waves. The purpose of this study was to investigate if this activity was influenced by Ca2+ uptake into mitochondria. Spontaneous Ca2+ waves were recorded using a Nipkow spinning disk confocal microscope and spontaneous transient inward currents (STICs) were recorded using the whole-cell patch clamp technique. Disruption of the mitochondrial membrane potential with the electron transport chain inhibitors rotenone (10 ,m) and antimycin A (5 ,m) abolished Ca2+ waves and increased basal Ca2+ levels. Similar results were achieved when mitochondria membrane potential was collapsed using the protonophores FCCP (0.2 ,m) and CCCP (1 ,m). Spontaneous Ca2+ waves were not inhibited by the ATP synthase inhibitor oligomycin (1 ,m), suggesting that these effects were not attributable to an effect on ATP levels. STICs recorded under voltage clamp at ,60 mV were also inhibited by CCCP and antimycin A. Dialysis of cells with the mitochondrial uniporter inhibitor RU360 (10 ,m) also inhibited STICS. Stimulation of Ca2+ uptake into mitochondria using the plant flavonoid kaempferol (10 ,m) induced a series of propagating Ca2+ waves. The kaempferol-induced activity was inhibited by application of caffeine (10 mm) or removal of extracellular Ca2+, but was not significantly affected by the IP3 receptor blocker 2-APB (100 ,m). These data suggest that spontaneous Ca2+ waves in urethral ICC are regulated by buffering of cytoplasmic Ca2+ by mitochondria. [source]


Spontaneous Ca2+ Waves in Rabbit Corpus Cavernosum: Modulation by Nitric Oxide and cGMP

THE JOURNAL OF SEXUAL MEDICINE, Issue 4 2009
Gerard P. Sergeant PhD
ABSTRACT Introduction., Detumescent tone and subsequent relaxation by nitric oxide (NO) are essential processes that determine the erectile state of the penis. Despite this, the mechanisms involved are incompletely understood. It is often assumed that the tone is associated with a sustained high cytosolic Ca2+ level in the corpus cavernosum smooth muscle cells, however, an alternative possibility is that oscillatory Ca2+ signals regulate tone, and erection occurs as a result of inhibition of Ca2+ oscillations by NO. Aims., The aim of this study is to determine if smooth muscle cells displayed spontaneous Ca2+ oscillations and, if so, whether these were regulated by NO. Methods., Male New Zealand white rabbits were euthanized and smooth muscle cells were isolated by enzymatic dispersal for confocal imaging of intracellular Ca2+ (using fluo-4AM) and patch clamp recording of spontaneous membrane currents. Thin tissue slices were also loaded with fluo-4AM for live imaging of Ca2+. Main Outcome Measure., Cytosolic Ca2+ was measured in isolated smooth muscle cells and tissue slices. Results., Isolated rabbit corpus cavernosum smooth muscle cells developed spontaneous Ca2+ waves that spread at a mean velocity of 65 µm/s. Dual voltage clamp/confocal recordings revealed that each of the Ca2+ waves was associated with an inward current typical of the Ca2+ -activated Cl - currents developed by these cells. The waves depended on an intact sarcoplasmic reticulum Ca2+ store, as they were blocked by cyclopiazonic acid (Calbiochem, San Diego, CA, USA) and agents that interfere with ryanodine receptors and IP3 -mediated Ca2+ release. The waves were also inhibited by an NO donor (diethylamine NO; Tocris Bioscience, Bristol, Avon, UK), 3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole (YC-1) (Alexis Biochemicals, Bingham, Notts, UK), 8-bromo-cyclic guanosine mono-phosphate (Tocris), and sildenafil (Viagra, Pfizer, Sandwich, Kent, UK). Regular Ca2+ oscillations were also observed in whole tissue slices where they were clearly seen to precede contraction. This activity was also markedly inhibited by sildenafil, suggesting that it was under NO regulation. Conclusions., These results provide a new basis for understanding detumescent tone in the corpus cavernosum and its inhibition by NO. Sergeant GP, Craven M, Hollywood MA, McHale NG, and Thornbury KD. Spontaneous Ca2+ waves in rabbit corpus cavernosum: Modulation by nitric oxide and cGMP. J Sex Med **;**:**,**. [source]


Calmodulin kinase II initiates arrhythmogenicity during metabolic acidification in murine hearts

ACTA PHYSIOLOGICA, Issue 1 2009
T. H. Pedersen
Abstract Aim:, The multifunctional signal molecule calmodulin kinase II (CaMKII) has been associated with cardiac arrhythmogenesis under conditions where its activity is chronically elevated. Recent studies report that its activity is also acutely elevated during acidosis. We test a hypothesis implicating CaMKII in the arrhythmogenesis accompanying metabolic acidification. Methods:, We obtained monophasic action potential recordings from Langendorff-perfused whole heart preparations and single cell action potentials (AP) using whole-cell patch-clamped ventricular myocytes. Spontaneous sarcoplasmic reticular (SR) Ca2+release events during metabolic acidification were investigated using confocal microscope imaging of Fluo-4-loaded ventricular myocytes. Results:, In Langendorff-perfused murine hearts, introduction of lactic acid into the Krebs-Henseleit perfusate resulted in abnormal electrical activity and ventricular tachycardia. The CaMKII inhibitor, KN-93 (2 ,m), reversibly suppressed this spontaneous arrhythmogenesis during intrinsic rhythm and regular 8 Hz pacing. However, it failed to suppress arrhythmia evoked by programmed electrical stimulation. These findings paralleled a CaMKII-independent reduction in the transmural repolarization gradients during acidosis, which previously has been associated with the re-entrant substrate under other conditions. Similar acidification produced spontaneous AP firing and membrane potential oscillations in patch-clamped isolated ventricular myocytes when pipette solutions permitted cytosolic Ca2+ to increase following acidification. However, these were abolished by both KN-93 and use of pipette solutions that held cytosolic Ca2+ constant during acidosis. Acidosis also induced spontaneous Ca2+ waves in isolated intact Fluo-4-loaded myocytes studied using confocal microscopy that were abolished by KN-93. Conclusion:, These findings together implicate CaMKII-dependent SR Ca2+ waves in spontaneous arrhythmic events during metabolic acidification. [source]


Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethra

THE JOURNAL OF PHYSIOLOGY, Issue 19 2008
Gerard P. Sergeant
Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit pacemaker activity that results from spontaneous Ca2+ waves. The purpose of this study was to investigate if this activity was influenced by Ca2+ uptake into mitochondria. Spontaneous Ca2+ waves were recorded using a Nipkow spinning disk confocal microscope and spontaneous transient inward currents (STICs) were recorded using the whole-cell patch clamp technique. Disruption of the mitochondrial membrane potential with the electron transport chain inhibitors rotenone (10 ,m) and antimycin A (5 ,m) abolished Ca2+ waves and increased basal Ca2+ levels. Similar results were achieved when mitochondria membrane potential was collapsed using the protonophores FCCP (0.2 ,m) and CCCP (1 ,m). Spontaneous Ca2+ waves were not inhibited by the ATP synthase inhibitor oligomycin (1 ,m), suggesting that these effects were not attributable to an effect on ATP levels. STICs recorded under voltage clamp at ,60 mV were also inhibited by CCCP and antimycin A. Dialysis of cells with the mitochondrial uniporter inhibitor RU360 (10 ,m) also inhibited STICS. Stimulation of Ca2+ uptake into mitochondria using the plant flavonoid kaempferol (10 ,m) induced a series of propagating Ca2+ waves. The kaempferol-induced activity was inhibited by application of caffeine (10 mm) or removal of extracellular Ca2+, but was not significantly affected by the IP3 receptor blocker 2-APB (100 ,m). These data suggest that spontaneous Ca2+ waves in urethral ICC are regulated by buffering of cytoplasmic Ca2+ by mitochondria. [source]


Spontaneous Ca2+ Waves in Rabbit Corpus Cavernosum: Modulation by Nitric Oxide and cGMP

THE JOURNAL OF SEXUAL MEDICINE, Issue 4 2009
Gerard P. Sergeant PhD
ABSTRACT Introduction., Detumescent tone and subsequent relaxation by nitric oxide (NO) are essential processes that determine the erectile state of the penis. Despite this, the mechanisms involved are incompletely understood. It is often assumed that the tone is associated with a sustained high cytosolic Ca2+ level in the corpus cavernosum smooth muscle cells, however, an alternative possibility is that oscillatory Ca2+ signals regulate tone, and erection occurs as a result of inhibition of Ca2+ oscillations by NO. Aims., The aim of this study is to determine if smooth muscle cells displayed spontaneous Ca2+ oscillations and, if so, whether these were regulated by NO. Methods., Male New Zealand white rabbits were euthanized and smooth muscle cells were isolated by enzymatic dispersal for confocal imaging of intracellular Ca2+ (using fluo-4AM) and patch clamp recording of spontaneous membrane currents. Thin tissue slices were also loaded with fluo-4AM for live imaging of Ca2+. Main Outcome Measure., Cytosolic Ca2+ was measured in isolated smooth muscle cells and tissue slices. Results., Isolated rabbit corpus cavernosum smooth muscle cells developed spontaneous Ca2+ waves that spread at a mean velocity of 65 µm/s. Dual voltage clamp/confocal recordings revealed that each of the Ca2+ waves was associated with an inward current typical of the Ca2+ -activated Cl - currents developed by these cells. The waves depended on an intact sarcoplasmic reticulum Ca2+ store, as they were blocked by cyclopiazonic acid (Calbiochem, San Diego, CA, USA) and agents that interfere with ryanodine receptors and IP3 -mediated Ca2+ release. The waves were also inhibited by an NO donor (diethylamine NO; Tocris Bioscience, Bristol, Avon, UK), 3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole (YC-1) (Alexis Biochemicals, Bingham, Notts, UK), 8-bromo-cyclic guanosine mono-phosphate (Tocris), and sildenafil (Viagra, Pfizer, Sandwich, Kent, UK). Regular Ca2+ oscillations were also observed in whole tissue slices where they were clearly seen to precede contraction. This activity was also markedly inhibited by sildenafil, suggesting that it was under NO regulation. Conclusions., These results provide a new basis for understanding detumescent tone in the corpus cavernosum and its inhibition by NO. Sergeant GP, Craven M, Hollywood MA, McHale NG, and Thornbury KD. Spontaneous Ca2+ waves in rabbit corpus cavernosum: Modulation by nitric oxide and cGMP. J Sex Med **;**:**,**. [source]