Specificity Determinants (specificity + determinant)

Distribution by Scientific Domains


Selected Abstracts


Crystal structure of the parasite inhibitor chagasin in complex with papain allows identification of structural requirements for broad reactivity and specificity determinants for target proteases

FEBS JOURNAL, Issue 3 2009
Izabela Redzynia
A complex of chagasin, a protein inhibitor from Trypanosoma cruzi, and papain, a classic family C1 cysteine protease, has been crystallized. Kinetic studies revealed that inactivation of papain by chagasin is very fast (kon = 1.5 × 106 m,1·s,1), and results in the formation of a very tight, reversible complex (Ki = 36 pm), with similar or better rate and equilibrium constants than those for cathepsins L and B. The high-resolution crystal structure shows an inhibitory wedge comprising three loops, which forms a number of contacts responsible for the high-affinity binding. Comparison with the structure of papain in complex with human cystatin B reveals that, despite entirely different folding, the two inhibitors utilize very similar atomic interactions, leading to essentially identical affinities for the enzyme. Comparisons of the chagasin,papain complex with high-resolution structures of chagasin in complexes with cathepsin L, cathepsin B and falcipain allowed the creation of a consensus map of the structural features that are important for efficient inhibition of papain-like enzymes. The comparisons also revealed a number of unique interactions that can be used to design enzyme-specific inhibitors. As papain exhibits high structural similarity to the catalytic domain of the T. cruzi enzyme cruzipain, the present chagasin,papain complex provides a reliable model of chagasin,cruzipain interactions. Such information, coupled with our identification of specificity-conferring interactions, should be important for the development of drugs for treatment of the devastating Chagas disease caused by this parasite. [source]


Analysis of herpesvirus host specificity determinants using herpesvirus genomes as bacterial artificial chromosomes

MICROBIOLOGY AND IMMUNOLOGY, Issue 8 2009
Jun Arii
ABSTRACT Almost all mammalian alphaherpesviruses can grow in cells derived from several types of animals in vitro. However, FHV-1 can only infect feline cell lines. For this reason, FHV-1 should be a good model to investigate species barriers to herpesviruses in vivo. To apply bacterial mutagenesis of FHV-1, we cloned the FHV-1 genome as a BAC. Using , and flp recombinations, we introduced a monomeric red fluorescence protein into the C-terminus of glycoprotein D. Although GFP in the constructed recombinant FHV-1, a transfectant of the bacmid of FHV-1 that possessed the GFP, acted in non-feline cell lines, the virus could not enter non-feline cell lines, demonstrating that the host specificity of FHV-1 was restricted in an early step of infection. The host range of canine herpesvirus is limited to dogs in vitro and in vivo; it cannot enter non-canine cell lines as a result of infection but the GFP is active by transfection, revealing the same result that the restriction step is at an early stage of infection. These results suggest the possibility of breaking species barriers of FHV-1 and CHV by modifying the gene(s) that act at the early stage of infection. [source]


Signal transduction meets systems biology: deciphering specificity determinants for protein,protein interactions

MOLECULAR MICROBIOLOGY, Issue 6 2008
Robert B. Bourret
Summary Two recent papers (Gao et al. 2008 and Skerker et al. 2008) describe investigations into the specificity of protein,protein interactions that occur during signal transduction by two-component regulatory systems. This MicroCommentary summarizes and provides context for the reported findings. The results offer insights into molecular determinants that provide specificity to maintain signal separation and thus prevent deleterious cross-talk between pathways, as well as the potential extent and nature of interactions that may combine signals to achieve beneficial cross-regulation among pathways. The methods employed are suitable for application to other systems. [source]


Not all J domains are created equal: Implications for the specificity of Hsp40,Hsp70 interactions

PROTEIN SCIENCE, Issue 7 2005
Fritha Hennessy
Abstract Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40,Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40,Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity. [source]


Structures of BIR domains from human NAIP and cIAP2

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2009
Maria Dolores Herman
The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1,,P4, side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3, position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2, and P4, pockets make similar interactions to those seen in other BIR domain,peptide complexes. The structures also reveal how a serine in the P1, position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins. [source]


Mapping the Limits of Substrate Specificity of the Adenylation Domain of TycA

CHEMBIOCHEM, Issue 4 2009
Benoit R. M. Villiers
Abstract The limits and potential of substrate promiscuity of the adenylation domain of tyrocidine synthetase 1 were systematically explored. Substrate acceptance is governed by hydrophobic effects (as shown by the correlation of kcat/KM and side-chain log,P), shape complementarity and steric exclusion. The quantification of these factors provides ground rules for understanding and possibly evolving substrate specificity in this class of enzymes. The catalytic potential of tyrocidine synthetase 1 (TycA) was probed by the kinetic characterization of its adenylation activity. We observed reactions with 30 substrates, thus suggesting some substrate promiscuity. However, although the TycA adenylation (A) domain was able to accommodate alternative substrates, their kcat/KM values ranged over six orders of magnitude. A comparison of the activities allowed the systematic mapping of the substrate specificity determinants of the TycA A-domain. Hydrophobicity plays a major role in the recognition of substrate analogues but can be combined with shape complementarity, conferring higher activity, and/or steric exclusion, leading to substantial discrimination against larger substrates. A comparison of the kcat/KM values of the TycA A-domain and phenylalanyl-tRNA synthetase showed that the level of discrimination was comparable in the two enzymes for the adenylation reaction and suggested that TycA was also subjected to high selective pressure. The specificity patterns observed and the quantification of alternative activities provide a basis for exploring possible paths for the future directed evolution of A-domain specificity. [source]