Specific Stimuli (specific + stimulus)

Distribution by Scientific Domains


Selected Abstracts


Perfusion-based functional magnetic resonance imaging,

CONCEPTS IN MAGNETIC RESONANCE, Issue 1 2003
Afonso C. Silva
Abstract The measurement of cerebral blood flow (CBF) is a very important way of assessing tissue viability, metabolism, and function. CBF can be measured noninvasively with magnetic resonance imaging (MRI) by using arterial water as a perfusion tracer. Because of the tight coupling between neural activity and CBF, functional MRI (fMRI) techniques are having a large impact in defining regions of the brain that are activated due to specific stimuli. Among the different fMRI techniques, CBF-based fMRI has the advantages of being specific to tissue signal change, a critical feature for quantitative measurements within and across subjects, and for high-resolution functional mapping. Unlike the conventional blood oxygenation level dependent (BOLD) technique, the CBF change is an excellent index of the magnitude of neural activity change. Thus, CBF-based fMRI is the tool of choice for longitudinal functional imaging studies. A review of the principles and theoretical backgrounds of both continuous and pulsed arterial spin labeling methods for measuring CBF is presented, and a general overview of their current applications in the field of functional brain mapping is provided. In particular, examples of the use of CBF-based fMRI to investigate the fundamental hemodynamic responses induced by neural activity and to determine the signal source of the most commonly used BOLD functional imaging are reviewed. © 2003 Wiley Periodicals, Inc. Concepts Magn Reson 16A: 16,27, 2003 [source]


Consistency, context and confidence in judgements of affective communication in adults with profound intellectual and multiple disabilities

JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, Issue 1 2001
J. Hogg
Abstract Twenty-four service providers rated 12 video samples of four service users with whom they were familiar for affective behaviour (i.e. ,like'/,dislike') and confidence (i.e. ,certain'/'uncertain') in their judgement. Each video sample had been recorded as part of a stimulus preference assessment during which a wide range of specific stimuli were presented to each service user. Each video sample was presented twice in a counterbalanced design either with contextual information, i.e. what the presented stimulus was (C) or without such information, i.e. context free (CF). The observers showed considerable individual variation in their judgements, largely uninfluenced by the availability or otherwise of contextual information. However, as a group, observers significantly distinguished between video samples with regard to affective communication (determined through multiple analyses of variance) and the pattern of judgements, i.e. the relative judgement of positive or negative affect, from one sample to another. This showed a good level of consistency between observers (determined through principal components analysis). The impact of contextual information was not apparent for all video samples. However, contextual information significantly influenced judgements in four samples, typically making them more extreme; for example, a response indicative of positive affect in the CF situation became more positive when contextual information was provided, indicating that the stimulus was one that the participant was thought to like. [source]


Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2003
M. Eren
Summary., Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal ,2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-,1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-,1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal ,2.9 kb promoter. [source]


Impairment of endothelial cell differentiation from bone marrow,derived mesenchymal stem cells: New insight into the pathogenesis of systemic sclerosis

ARTHRITIS & RHEUMATISM, Issue 6 2007
P. Cipriani
Objective Systemic sclerosis (SSc) is a disorder characterized by vascular damage and fibrosis of the skin and internal organs. Despite marked tissue hypoxia, there is no evidence of compensatory angiogenesis. The ability of mesenchymal stem cells (MSCs) to differentiate into endothelial cells was recently demonstrated. The aim of this study was to determine whether impaired differentiation of MSCs into endothelial cells in SSc might contribute to disease pathogenesis by decreasing endothelial repair. Methods MSCs obtained from 7 SSc patients and 15 healthy controls were characterized. The number of colony-forming unit,fibroblastoid colonies was determined. After culture in endothelial-specific medium, the endothelial-like MSC (EL-MSC) phenotype was assessed according to the surface expression of vascular endothelial growth factor receptors (VEGFRs). Senescence, chemoinvasion, and capillary morphogenesis studies were also performed. Results MSCs from SSc patients displayed the same phenotype and clonogenic activity as those from controls. In SSc MSCs, a decreased percentage of VEGFR-2+, CXCR4+, VEGFR-2+/CXCR4+ cells and early senescence was detected. After culturing, SSc EL-MSCs showed increased expression of VEGFR-1, VEGFR-2, and CXCR4, did not express CD31 or annexin V, and showed significantly decreased migration after specific stimuli. Moreover, the addition of VEGF and stromal cell,derived factor 1 to cultured SSc EL-MSCs increased their angiogenic potential less than that in controls. Conclusion Our data strongly suggest that endothelial repair may be affected in SSc. The possibility that endothelial progenitor cells could be used to increase vessel growth in chronic ischemic tissues may open up new avenues in the treatment of vascular damage caused by SSc. [source]


The mast cell and allergic diseases: role in pathogenesis and implications for therapy

CLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2008
J. M. Brown
Summary Mast cells have long been recognized for their role in the genesis of allergic inflammation; and more recently for their participation in innate and acquired immune responses. Mast cells reside within tissues including the skin and mucosal membranes, which interface with the external environment; as well as being found within vascularized tissues next to nerves, blood vessels and glandular structures. Mast cells have the capability of reacting both within minutes and over hours to specific stimuli, with local and systemic effects. Mast cells express the high affinity IgE receptor (Fc,RI) and upon aggregation of Fc,RI by allergen-specific IgE, mast cells release and generate biologically active preformed and newly synthesized mediators which are involved in many aspects of allergic inflammation. While mast cells have been well documented to be essential for acute allergic reactions, more recently the importance of mast cells in reacting through pattern recognition receptors in innate immune responses has become recognized. Moreover, as our molecular understanding of the mast cell has evolved, novel targets for modulation have been identified with promising therapeutic potential. [source]


The management of severe dental phobia in an adolescent boy: a case report

INTERNATIONAL JOURNAL OF PAEDIATRIC DENTISTRY, Issue 4 2000
J. Levitt
Dental fear is a widespread problem that represents one of the major barriers to dental care. This report describes a case study of a 12-year-old boy who presented with dental phobia characterized as ,fear of catastrophe', ,generalized dental fear' and ,fear of specific stimuli'. The referral came from his general dental practitioner who had been unable to carry out even the simplest dental procedure on him. The patient required prevention, conservation and root canal therapy. The case illustrates the use of physical strategies, including muscle relaxation and relaxation breathing; practice strategies, including graded exposure and cognitive strategies, combined with individual control methods and inhalation sedation to successfully complete the dental treatment plan. [source]


Gene positional changes relative to the nuclear substructure during carbon tetrachloride-induced hepatic fibrosis in rats

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
Apolinar Maya-Mendoza
Abstract In the interphase nucleus the DNA of higher eukaryotes is organized in loops anchored to a substructure known as the nuclear matrix (NM). The topological relationship between gene sequences located in the DNA loops and the NM appears to be very important for nuclear physiology because processes such as replication, transcription, and processing of primary transcripts occur at macromolecular complexes located at discrete sites upon the NM. Mammalian hepatocytes rarely divide but preserve a proliferating capacity that is displayed in vivo after specific stimulus. We have previously shown that transient changes in the relative position of specific genes to the NM occur during the process of liver regeneration after partial ablation of the liver, but also that such changes correlate with the replicating status of the cells. Moreover, since chronic exposure to carbon tetrachloride (CCl4) leads to bouts of hepatocyte damage and regeneration, and eventually to non-reversible liver fibrosis in the rat, we used this animal model in order to explore if genes that show differential activity in the liver change or modify their relative position to the NM during the process of liver fibrosis induction. We found that changes in the relative position of specific genes to the NM occur during the chronic administration of CCl4, but also that such changes correlate with the proliferating status of the hepatocytes that goes from quiescence to regeneration to replicative senescence along the course of CCl4 -induced liver fibrosis, indicating that specific configurations in the higher-order DNA structure underlie the stages of progression towards liver fibrosis. © 2004 Wiley-Liss, Inc. [source]