Specific Reaction (specific + reaction)

Distribution by Scientific Domains


Selected Abstracts


Specific reactions of S -nitrosothiols with cysteine hydrolases: A comparative study between dimethylargininase-1 and CTP synthetase

PROTEIN SCIENCE, Issue 8 2007
Oliver Braun
Abstract S-Transnitrosation is an important bioregulatory process whereby NO+ equivalents are transferred between S -nitrosothiols and Cys of target proteins. This reaction proceeds through a common intermediate R,S,N(O,),S,R, and it has been proposed that products different from S -nitrosothiols may be formed in protein cavities. Recently, we have reported on the formation of such a product, an N -thiosulfoximide, at the active site of the Cys hydrolase dimethylargininase-1 (DDAH-1) upon reaction with S -nitroso- l -homocysteine (HcyNO). Here we have addressed the question of whether this novel product can also be formed with the endogenously occurring S -nitrosothiols S -nitroso- l -cysteine (CysNO) and S -nitrosoglutathione (GSNO). Further, to explore the reason responsible for the unique formation of an N -thiosulfoximide in DDAH-1 we have expanded these studies to cytidine triphosphate synthetase (CTPS), which shows a similar active site architecture. ESI-MS and activity measurements showed that the bulky GSNO does not react with both enzymes. In contrast, S-nitrosylation of the active site Cys occurred in DDAH-1 with CysNO and in CTPS with CysNO and HcyNO. Although kinetic analysis indicated that these compounds act as specific irreversible inhibitors, no N -thiosulfoximide was formed. The reasons likely responsible for the absence of the N -thiosulfoximide formation are discussed using molecular models of DDAH-1 and CTPS. In tissue extracts DDAH was inhibited only by HcyNO, with an IC50 value similar to that of the isolated protein. Biological implications of these studies for the function of both enzymes are discussed. [source]


Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis

FEBS JOURNAL, Issue 22 2000
Nikolas E. Labrou
The 2,,3,-dialdehyde derivative of ADP (oADP) has been shown to be an affinity label for the NAD+ binding site of recombinant Candida boidinii formate dehydrogenase (FDH). Inactivation of FDH by oADP at pH 7.6 followed biphasic pseudo first-order saturation kinetics. The rate of inactivation exhibited a nonlinear dependence on the concentration of oADP, which can be described by reversible binding of reagent to the enzyme (Kd = 0.46 mm for the fast phase, 0.45 mm for the slow phase) prior to the irreversible reaction, with maximum rate constants of 0.012 and 0.007 min,1 for the fast and slow phases, respectively. Inactivation of formate dehydrogenase by oADP resulted in the formation of an enzyme,oADP product, a process that was reversed after dialysis or after treatment with 2-mercaptoethanol (> 90% reactivation). The reactivation of the enzyme by 2-mercaptoethanol was prevented if the enzyme,oADP complex was previously reduced by NaBH4, suggesting that the reaction product was a stable Schiff's base. Protection from inactivation was afforded by nucleotides (NAD+, NADH and ADP) demonstrating the specificity of the reaction. When the enzyme was completely inactivated, approximately 1 mol of [14C]oADP per mol of subunit was incorporated. Cleavage of [14C]oADP-modified enzyme with trypsin and subsequent separation of peptides by RP-HPLC gave only one radioactive peak. Amino-acid sequencing of the radioactive tryptic peptide revealed the target site of oADP reaction to be Lys360. These results indicate that oADP inactivates FDH by specific reaction at the nucleotide binding site, with negative cooperativity between subunits accounting for the appearance of two phases of inactivation. Molecular modelling studies were used to create a model of C. boidinii FDH, based on the known structure of the Pseudomonas enzyme, using the modeller 4 program. The model confirmed that Lys360 is positioned at the NAD+ -binding site. Site-directed mutagenesis was used in dissecting the structure and functional role of Lys360. The mutant Lys360,Ala enzyme exhibited unchanged kcat and Km values for formate but showed reduced affinity for NAD+. The molecular model was used to help interpret these biochemical data concerning the Lys360,Ala enzyme. The data are discussed in terms of engineering coenzyme specificity. [source]


Backbone Diversity Analysis in Catalyst Design

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2009

Abstract We present a computer-based heuristic framework for designing libraries of homogeneous catalysts. In this approach, a set of given bidentate ligand-metal complexes is disassembled into key substructures ("building blocks"). These include metal atoms, ligating groups, backbone groups, and residue groups. The computer then rearranges these building blocks into a new library of virtual catalysts. We then tackle the practical problem of choosing a diverse subset of catalysts from this library for actual synthesis and testing. This is not trivial, since ,catalyst diversity' itself is a vague concept. Thus, we first define and quantify this diversity as the difference between key structural parameters (descriptors) of the catalysts, for the specific reaction at hand. Subsequently, we propose a method for choosing diverse sets of catalysts based on catalyst backbone selection, using weighted D-optimal design. The computer selects catalysts with different backbones, where the difference is measured as a distance in the descriptors space. We show that choosing such a D-optimal subset of backbones gives more diversity than a simple random sampling. The results are demonstrated experimentally in the nickel-catalysed hydrocyanation of 3-pentenenitrile to adiponitrile. Finally, the connection between backbone diversity and catalyst diversity, and the implications towards in silico catalysis design are discussed. [source]


Antiproliferative and apoptotic effects of the herbal agent Pygeum africanum on cultured prostate stromal cells from patients with benign prostatic hyperplasia (BPH) ,,

THE PROSTATE, Issue 10 2010
Maria T. Quiles
Abstract BACKGROUND Previous reports show that the herbal agent Pygeum africanum (PA) used to treat benign prostatic hyperplasia (BPH) inhibits proliferation of prostate stromal cells from BPH tissues. To determine underlying mechanisms, we compared proliferative and apoptotic responses to PA between BPH and non-BPH prostate stromal cells with a focus on the specific reaction displayed by stromal cell subsets. An interaction of PA with growth factors and hormones was also investigated. METHODS Primary prostate stromal cells from BPH/LUTS patients undergoing open prostatectomy (n,=,3) and patients without benign prostatic hyperplasia (BPH) undergoing cystectomy (n,=,3) were treated with PA. Cells were characterized by immunofluorescence. Sensitivity to PA was determined using proliferation assays. Apoptosis, transforming growth factor B1 (TGFB1), fibroblast growth factor 2 (FGF2), vimentin, , smooth muscle actin (,SMA), and smoothelin expression were examined after PA treatment. Cell immunophenotype and proliferation were tested after incubating cells with PA plus either FGF2, TGFB1, vascular endothelial growth factor (VEGF), dihydrotestosterone (DHT) or 17,-estradiol (E2). RESULTS Antiproliferative potency and apoptosis induced by PA on stromal cells were increased in BPH versus non-BPH cells. Apoptosis targeted ,SMA+ cells, more abundant in BPH cells. Downregulation of TGFB1 expression was induced by PA. FGF2 increased cells sensitivity to PA. Incubation with other mitogenic factors like VEGF, DHT, and E2 decreased sensitivity to PA. Both TGFB1 and E2 blocked the antiproliferative activity of PA. CONCLUSIONS Results suggest that PA is antiproliferative and apoptotic on proliferative prostate fibroblasts and myofibroblasts but not on smooth muscle cells. Mechanisms of action include TGFB1 downregulation and inhibition of FGF2 specific signaling. Prostate 70: 1044,1053, 2010. © 2010 Wiley-Liss, Inc. [source]


Application of Surface Photo Charge Effect for Milk Quality Control

JOURNAL OF FOOD SCIENCE, Issue 7 2009
O. Ivanov
ABSTRACT:, The potential difference induced by the interaction of samples with electromagnetic radiation in the visible region is used for food characterization. In this article we show that the above effect can be applied for the understanding of specific reactions and processes taking place in milk such as change of the acidity and changes caused by an added reagent. We also propose a technique for instantaneous detection of inhibitors of starter bacteria in milk. We suggest possible methods for quality control of milk and other foods. Instantaneous results, practically no expenses for consumables, and possibilities for field measurements will be some of the advantages of this approach. [source]


Molecular facets of sphingolipids: Mediators of diseases

BIOTECHNOLOGY JOURNAL, Issue 7 2009
Fatma Betul Kavun Ozbayraktar
Abstract Sphingolipids constitute a biologically active lipid class that is significantly important from both structural and regulatory aspects. The manipulation of sphingolipid metabolism is currently being studied as a novel strategy for cancer therapy. The basics of this therapeutic approach lie in the regulation property of sphingolipids on cellular processes, which are important in a cell's fate, such as cell proliferation, apoptosis, cell cycle arrest, senescence, and inflammation. Furthermore, the mutations in the enzymes catalyzing some specific reactions in the sphingolipid metabolism cause mortal lysosomal storage diseases like Fabry, Gaucher, Niemann-Pick, Farber, Krabbe, and Metachromatic Leukodystrophy. Therefore, the alteration of the sphingolipid metabolic pathway determines the choice between life and death. Understanding the sphingolipid metabolism and regulation is significant for the development of new therapeutic approaches for all sphingolipid-related diseases, as well as for cancer. An important feature of the sphingolipid metabolic pathway is the compartmentalization into endoplasmic reticulum, the Golgi apparatus, lysosome and plasma membrane, and this compartmentalization makes the transport of sphingolipids critical for proper functioning. This paper focuses on the structures, metabolic pathways, localization, transport mechanisms, and diseases of sphingolipids in Saccharomyces cerevisiae and humans, and provides the latest comprehensive information on sphingolipid research. [source]