Specific Mechanisms (specific + mechanism)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Mitochondria and Ca2+ signaling

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2000
Emil C. Toescu
Abstract Mitochondria play a central role in cell homeostasis. Amongst others, one of the important functions of mitochondria is to integrate its metabolic response with one of the major signaling pathways - the Ca2+ signaling. Mitochondria are capable to sense the levels of cytosolic Ca2+ and generate mitochondrial Ca2+ responses. Specific mechanisms for both Ca2+ uptake and Ca2+ release exist in the mitochondrial membranes. In turn, the mitochondrial Ca2+ signals are able to produce changes in the mitochondrial function and metabolism, which provide the required level of functional integration. This essay reviews briefly the current available information regarding the mitochondrial Ca2+ transport systems and some of the functional consequences of mitochondrial Ca2+ uptake [source]


Low-dose metformin improves hyperglycaemia related to myotonic dystrophy

DIABETIC MEDICINE, Issue 3 2005
T. Kouki
Abstract Background One of the clinical features of myotonic dystrophy is insulin resistance with non-obese diabetes mellitus (DM). Recently, the mechanism of insulin resistance in patients with myotonic dystrophy was revealed. The optimal treatment of DM with myotonic dystrophy has not been established. We report the effect of metformin in a patient with myotonic dystrophy without obesity. Case report A 58-year-old woman (BMI = 22.1 kg/m2) with myotonic dystrophy and DM was followed at our clinic. She had been treated with glimepiride for DM for the last 6 months, without achieving good control (HbA1c 9.3%). She was admitted with congestive heart failure and cholecystitis. She was treated with diuretics, antibiotics and insulin. As her blood glucose fell, we discontinued insulin and started glimepiride, but her glycaemic control had worsened. We started metformin instead of glimepiride. After 4 weeks of metformin, HbA1c was decreased to 7.4%, while HOMA-IR during glimepiride treatment was 4.9, and 3.7 with metformin. Three months later, HbA1c was maintained (7.5%). Conclusion It is important to choose the optimal treatment for DM in myotonic dystrophy, because the patients have hyperinsulinemia caused by specific mechanism and could not reduce the insulin resistance. Metformin improved hyperglycemia through increased insulin-independent glucose uptake in peripheral muscle. We believe metformin is the optimal agent for these patients. [source]


Activation of Epstein-Barr virus/C3d receptor (gp140, CR2, CD21) on human cell surface triggers pp60src and Akt-GSK3 activities upstream and downstream to PI 3-kinase, respectively

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2003
Monique Barel
Abstract We previously demonstrated that CR2 activation on human B lymphocyte surface specifically triggered tyrosine phosphorylation of the 95-kDa nucleolin, this leading to its binding on SH2 domainsof p85 sub-unit of PI 3-kinase and to activation of this enzyme. The specificity of CR2 pathway was clearly demonstrated as neither CD19 nor BCR could induce tyrosine phosphorylation of nucleolin in normal B lymphocytes. These data led us to investigate herein additional molecular events, which were triggered by CR2 activation, upstream and downstream to PI 3-kinase activation. Upstream, we demonstrated that pp60src, a tyrosine kinase of the src family, was involved in tyrosine phosphorylation of nucleolin, while syk tyrosine kinase was not. We also demonstrated a direct protein-proteininteraction of pp60src with nucleolin in a CR2-dependent and CD19-independent pathway. Downstream, we demonstrated that CR2 activation also triggered Akt and GSK3 enzyme activation, this pathway being under the control of pp60src tyrosine kinase activation. These regulatory functions of activated CR2 were specific as independent of syk tyrosine kinase and of CD19 and BCR activation. Thus, CR2 activation recruits a specific mechanism to activate PI 3-kinase and its subsequent pathways, this mechanism being different to those recruited by CD19 and BCR. [source]


The synthetic cannabinoid WIN55212-2 decreases the intraocular pressure in human glaucoma resistant to conventional therapies

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001
Anna Porcella
Abstract The search for new ocular hypotensive agents represents a frontier of current eye research because blindness due to optic neuropathy occurs insidiously in 10% of all patients affected by glaucoma. Cannabinoids have been proposed to lower intraocular pressure by either central or peripheral effects but a specific mechanism for this action has never been elucidated. We recently demonstrated the presence of the central cannabinoid receptor (CB1) mRNA and protein in the human ciliary body. In the present study we show that the synthetic CB1 receptor agonist, WIN 55212,2, applied topically at doses of 25 or 50 µg (n = 8), decreases the intraocular pressure of human glaucoma resistant to conventional therapies within the first 30 min (15 ± 0.5% and 23 ± 0.9%, respectively). A maximal reduction of 20 ± 0.7% and 31 ± 0.6%, respectively, is reached in the first 60 min. These data confirm that CB1 receptors have direct involvement in the regulation of human intraocular pressure, and suggest that, among various classes of promising antiglaucoma agents, synthetic CB1 receptor agonists should deserve further research and clinical development. [source]


Cloning of Xenopus orthologs of Ctf7/Eco1 acetyltransferase and initial characterization of XEco2

FEBS JOURNAL, Issue 24 2008
Masatoshi Takagi
Sister chromatid cohesion is important for the correct alignment and segregation of chromosomes during cell division. Although the cohesin complex has been shown to play a physical role in holding sister chromatids together, its loading onto chromatin is not sufficient for the establishment of sister chromatid cohesion. The activity of the cohesin complex must be turned on by Ctf7/Eco1 acetyltransferase at the replication forks as the result of a specific mechanism. To dissect this mechanism in the well established in vitro system based on the use of Xenopus egg extracts, we cloned two Xenopus orthologs of Ctf7/Eco1 acetyltransferase, XEco1 and XEco2. Both proteins share a domain structure with known members of Ctf7/Eco1 family proteins. Moreover, biochemical analysis showed that XEco2 exhibited acetyltransferase activity. We raised a specific antibody against XEco2 and used it to further characterize XEco2. In tissue culture cells, XEco2 gradually accumulated in nuclei through the S phase. In nuclei formed in egg extract, XEco2 was loaded into the chromatin at a constant level in a manner sensitive to geminin, an inhibitor of the pre-replication complex assembly, but insensitive to aphidicolin, an inhibitor of DNA polymerases. In both systems, no specific localization was observed during mitosis. In XEco2-depleted egg extracts, DNA replication occurred with normal kinetics and efficiency, and the condensation and sister chromatid cohesion of subsequently formed mitotic chromosomes was unaffected. These observations will serve as a platform for elucidating the molecular function of Ctf7/Eco1 acetyltransferase in the establishment of sister chromatid cohesion in future studies, in which XEco1 and XEco2 should be dissected in parallel. [source]


Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action

FEBS JOURNAL, Issue 3 2000
Vladimir Frecer
Lipid A moiety has been identified as the bioactive component of bacterial endotoxins (lipopolysaccharides). However, the molecular mechanism of biological activity of lipid A is still not fully understood. This paper contributes to understanding of the molecular mechanism of action of bacterial endotoxins by comparing molecular modelling results for two possible mechanisms with the underlying experimental data. Mechanisms of action involving specific binding of lipid A to a protein receptor as well as nonspecific intercalation into phospholipid membrane of a host cell were modelled and analysed. As the cellular receptor for endotoxin has not been identified, a model of a peptidic pseudoreceptor was proposed, based on molecular structure, symmetry of the lipid A moiety and the observed character of endotoxin-binding sites in proteins. We have studied the monomeric form of lipid A from Escherichia coli and its seven synthetic analogues with varying numbers of phosphate groups and correlated them with known biological activities determined by the Limulus assay. Gibbs free energies associated with the interaction of lipid A with the pseudoreceptor model and intercalation into phospholipid membrane calculated by molecular mechanics and molecular dynamics methods were used to compare the two possible mechanisms of action. The results suggest that specific binding of lipid A analogues to the peptidic pseudoreceptor carrying an amphipathic cationic binding pattern BHPHB (B, basic; H, hydrophobic; P, polar residue, respectively) is energetically more favourable than intercalation into the phospholipid membrane. In addition, binding affinities of lipid A analogues to the best minimum binding sequence KFSFK of the pseudoreceptor correlated with the experimental Limulus activity parameter. This correlation enabled us to rationalize the observed relationship between the number and position of the phosphate groups in the lipid A moiety and its biological activity in terms of specific ligand,receptor interactions. If lipid A,receptor interaction involves formation of phosphate-ammonium ion-pair(s) with cationic amino-acid residues, the specific mechanism of action was fully consistent with the underlying experimental data. As a consequence, recognition of lipid A variants by an amphipathic binding sequence BHPHB of a host-cell protein receptor might represent the initial and/or rate-determining molecular event of the mechanism of action of lipid A (or endotoxin). The insight into the molecular mechanism of action and the structure of the lipid A-binding pattern have potential implications for rational drug design strategies of endotoxin-neutralizing agents or binding factors. [source]


The DEAD box RNA helicase VBH-1 is required for germ cell function in C. elegans

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 9 2007
L. Silvia Salinas
Abstract Vasa and Belle are conserved DEAD box RNA helicases required for germ cell function. Homologs of this group of proteins in several species, including mammals, are able to complement a mutation in yeast (DED1) suggesting that their function is highly conserved. It has been proposed that these proteins are required for mRNA translation regulation, but their specific mechanism of action is still unknown. Here we describe functions of VBH-1, a C. elegans protein closely related to Belle and Vasa. VBH-1 is expressed specifically in the C. elegans germline, where it is associated with P granules, the C. elegans germ plasm counterpart. vbh-1(RNAi) animals produce fewer offspring than wild type because of defects in oocyte and sperm production, and embryonic lethality. We also find that VBH-1 participates in the sperm/oocyte switch in the hermaphrodite gonad. We conclude that VBH-1 and its orthologs may perform conserved roles in fertility and development. genesis 45:533,546, 2007. © 2007 Wiley-Liss, Inc. [source]


The role of psychosocial factors in young children's responses to cross-examination style questioning

APPLIED COGNITIVE PSYCHOLOGY, Issue 7 2009
Rachel Zajac
The goal of the present study was to ascertain whether individual differences in self-esteem, self-confidence, assertiveness and number of siblings could predict young children's responses to cross-examination style questioning. Five- and 6-year-old children (N,=,137) participated in a unique staged event and were then interviewed with analogues of direct and cross-examination. Despite highly accurate direct examination reports, children made a large number of changes to these reports during cross-examination, resulting in a significant decrease in accuracy. Poor cross-examination performance was associated with low levels of teacher-rated self-confidence, self-esteem and assertiveness, raising concern that the children who are likely to fare poorly during cross-examination may be the very children who are most likely to appear as witnesses in the courtroom. Furthermore, number of siblings was inversely related to cross-examination performance. Further research is required to pinpoint the specific mechanism(s) behind this finding. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Joint Models for Multivariate Longitudinal and Multivariate Survival Data

BIOMETRICS, Issue 2 2006
Yueh-Yun Chi
Summary Joint modeling of longitudinal and survival data is becoming increasingly essential in most cancer and AIDS clinical trials. We propose a likelihood approach to extend both longitudinal and survival components to be multidimensional. A multivariate mixed effects model is presented to explicitly capture two different sources of dependence among longitudinal measures over time as well as dependence between different variables. For the survival component of the joint model, we introduce a shared frailty, which is assumed to have a positive stable distribution, to induce correlation between failure times. The proposed marginal univariate survival model, which accommodates both zero and nonzero cure fractions for the time to event, is then applied to each marginal survival function. The proposed multivariate survival model has a proportional hazards structure for the population hazard, conditionally as well as marginally, when the baseline covariates are specified through a specific mechanism. In addition, the model is capable of dealing with survival functions with different cure rate structures. The methodology is specifically applied to the International Breast Cancer Study Group (IBCSG) trial to investigate the relationship between quality of life, disease-free survival, and overall survival. [source]


New potent and selective inhibitors of anandamide reuptake with antispastic activity in a mouse model of multiple sclerosis

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2006
Alessia Ligresti
We previously reported that the compound O-2093 is a selective inhibitor of the reuptake of the endocannabinoid anandamide (AEA). We have now re-examined the activity of O-2093 in vivo and synthesized four structural analogs (O-2247, O-2248, O-3246, and O-3262), whose activity was assessed in: (a) binding assays carried out with membranes from cells overexpressing the human CB1 and CB2 receptors; (b) assays of transient receptor potential of the vanilloid type-1 (TRPV1) channel functional activity (measurement of [Ca2+]i); (c) [14C]AEA cellular uptake and hydrolysis assays in rat basophilic leukaemia (RBL-2H3) cells; (d) the mouse ,tetrad' tests (analgesia on a hot plate, immobility on a ,ring', rectal hypothermia and hypolocomotion in an open field); and (e) the limb spasticity test in chronic relapsing experimental allergic encephalomyelitis (CREAE) mice, a model of multiple sclerosis (MS). O-2093, either synthesized by us or commercially available, was inactive in the ,tetrad' up to a 20 mg kg,1 dose (i.v.). Like O-2093, the other four compounds exhibited low affinity in CB1 (Ki from 1.3 to >10 ,M) and CB2 binding assays (1.310 ,M), very low potency as fatty acid amide hydrolase (FAAH) inhibitors (IC50>25 ,M) and were inactive in the ,tetrad' up to a 30 mg kg,1 dose (i.v.). While O-2247 and O-2248 were poor inhibitors of [14C]AEA cellular uptake (IC50>40 ,M), O-3246 and O-3262 were quite potent in this assay. O-3246, which exhibits only a very subtle structural difference with O-2093, is the most potent inhibitor of AEA uptake reported in vitro under our experimental conditions (IC50=1.4 ,M) and is 12-fold more potent than O-2093. When injected intravenously O-3246 and O-3262, again like O-2093 and unlike O-2247 and O-2248, significantly inhibited limb spasticity in mice with CREAE. These data confirm the potential utility of selective AEA uptake inhibitors as anti-spasticity drugs in MS and, given the very subtle chemical differences between potent and weak inhibitors of uptake, support further the existence of a specific mechanism for this process. British Journal of Pharmacology (2006) 147, 83,91. doi:10.1038/sj.bjp.0706418 [source]


Sensitive skin: closing in on a physiological cause

CONTACT DERMATITIS, Issue 3 2010
Miranda A. Farage
The phenomenon of ,sensitive skin' is a relatively recent complaint in which certain individuals report more intense and frequent adverse sensory effects than the normal population upon use of cosmetic (personal-care) products. Originally defined as a minority complaint, sensitive skin is now claimed by a majority of women in industrialized countries and nearly half of men. Sensitive skin is self-diagnosed and typically unaccompanied by any obvious physical signs of irritation, and the number of individuals who claim sensitivity has risen steadily with the number of consumer products targeted towards this supposedly uncommon group. Believed by many dermatologists, therefore, to be a ,princess and the pea' phenomenon, the problem of sensitive skin has largely avoided focussed research. Over the last few years, however, the evidence of documentable biophysical changes associated with the largely sensory symptoms of this disorder has accumulated, including some gained by improved methods of identifying subclinical signs of skin irritation. Although the understanding of the aetiology of this phenomenon is as yet incomplete, existing research now supports a biophysical origin for this disorder. Effective methods of diagnosis, intrinsic and extrinsic contributors to exaggerated neural sensitivity, and the specific mechanisms of the discomfort associated with the compliant are required, as are appropriate means of prevention and treatment. [source]


Transgenic mice for studies of the renin,angiotensin system in hypertension

ACTA PHYSIOLOGICA, Issue 4 2004
J. L. Lavoie
Abstract Hypertension is a polygenic and multi-factorial disorder that is extremely prevalent in western societies, and thus has received a great deal of attention by the research community. The renin,angiotensin system has a strong impact on the control of blood pressure both in the short- and long-term, making it one of the most extensively studied physiological systems. Nevertheless, despite decades of research, the specific mechanisms implicated in its action on blood pressure and electrolyte balance, as well as its integration with other cardiovascular pathways remains incomplete. The production of transgenic models either over-expressing or knocking-out specific components of the renin,angiotensin system has given us a better understanding of its role in the pathogenesis of hypertension. Moreover, our attention has recently been refocused on local tissue renin,angiotensin systems and their physiological effect on blood pressure and end-organ damage. Herein, we will review studies using genetic manipulation of animals to determine the role of the endocrine and tissue renin,angiotensin system in hypertension. We will also discuss some untraditional approaches to target the renin,angiotensin system in the kidney. [source]


Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy

DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 3 2008
Philippe Robaey
Abstract Pharmacogenetics holds the promise of minimizing adverse neurodevelopmental outcomes of cancer patients by identifying patients at risk, enabling the individualization of treatment and the planning of close follow-up and early remediation. This review focuses first on methotrexate, a drug often implicated in neurotoxicity, especially when used in combination with brain irradiation. The second focus is on glucocorticoids that have been found to be linked to adverse developmental effects in relation with the psychosocial environment. For both examples, we review how polymorphisms of genes encoding enzymes involved in specific mechanisms of action could moderate adverse neurodevelopmental consequences, eventually through common final pathways such as oxidative stress. We discuss a multiple hit model and possible strategies required to rise to the challenge of this integrative research. © 2008 Wiley-Liss, Inc. Dev Disabil Res Rev 2008;14:211,220. [source]


Cell proliferation during blastema formation in the regenerating teleost fin

DEVELOPMENTAL DYNAMICS, Issue 2 2002
Leonor Santos-Ruiz
Abstract Epimorphic regeneration in teleost fins occurs through the establishment of a balanced growth state in which a blastema gives rise to all the mesenchymal cells, whereas definite areas of the epidermis proliferate leading to its extension, thus, allowing the enlargement of the whole structure. This type of regeneration involves specific mechanisms that temporally and spatially regulate cell proliferation. To understand how the blastema is formed and how this growth situation is set up, we investigated cell proliferation patterns in the regenerating fin of the goldfish Carassius auratus from the time of amputation to that of blastema formation by using proliferating cell nuclear antigen immunostaining and bromodeoxyuridine labeling. Wound closure and apical epidermal cap formation took place by epidermal migration and re-arrangement, without the contribution of cell proliferation. As soon as the apical cap had formed, the epidermis started to proliferate at its lateral surfaces, in which all layers maintained cycling for the duration of the studied process. The distal epidermal cap, on the contrary, presented very few cycling cells, and its cytoarchitecture was indicative of continuous remodeling due to ray growth. The basal layer of this epidermal cap showed a typical morphology and remained nonproliferative whilst in contact with the proliferating blastema. Proliferation in the mesenchymal compartment of the ray started far from the amputation plane. Subsequently, cycling cells approached that location, until they formed the blastema in contact with the apical epidermal cap. Differences observed between the epidermis and mesenchyma, regarding activation of the cell cycle and the establishment of proliferative patterns, suggest that differential mechanisms regulate cell proliferation in each of these compartments during the initial stages of regeneration. © 2002 Wiley-Liss, Inc. [source]


Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution

ECOLOGY LETTERS, Issue 11 2008
Salvatore J. Agosta
Abstract Ecological fitting is the process whereby organisms colonize and persist in novel environments, use novel resources or form novel associations with other species as a result of the suites of traits that they carry at the time they encounter the novel condition. This paper has four major aims. First, we review the original concept of ecological fitting and relate it to the concept of exaptation and current ideas on the positive role of phenotypic plasticity in evolution. Second, we propose phenotypic plasticity, correlated trait evolution and phylogenetic conservatism as specific mechanisms behind ecological fitting. Third, we attempt to operationalize the concept of ecological fitting by providing explicit definitions for terms. From these definitions, we propose a simple conceptual model of ecological fitting. Using this model, we demonstrate the differences and similarities between ecological fitting and ecological resource tracking and illustrate the process in the context of species colonizing new areas and forming novel associations with other species. Finally, we discuss how ecological fitting can be both a precursor to evolutionary diversity or maintainer of evolutionary stasis, depending on conditions. We conclude that ecological fitting is an important concept for understanding topics ranging from the assembly of ecological communities and species associations, to biological invasions, to the evolution of biodiversity. [source]


Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress

ENVIRONMENTAL MICROBIOLOGY, Issue 10 2003
Maia Kivisaar
Summary Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed. [source]


Cyclosporine Induces Epileptiform Activity in an In Vitro Seizure Model

EPILEPSIA, Issue 3 2000
Michael Wong
Summary: Purpose: Cyclosporine (CSA) toxicity represents a common cause of seizures in transplant patients, but the specific mechanisms by which CSA induces seizures are unknown. Although CSA may promote seizure activity by various metabolic, toxic, vascular, or structural mechanisms, CSA also has been hypothesized to modulate neuronal excitability directly. The objective of this study was to determine if CSA exerts direct epileptogenic actions on neurons in an in vitro seizure model. Methods: Combined hippocampal-entorhinal cortex slices from juvenile rats were exposed directly to artificial cerebro-spinal fluid (ACSF) containing either (a) 1.0 mM magnesium sulfate (control), (b) 1.0 mM sodium sulfate (low-magnesium), or (c) 1.0 mM magnesium sulfate + CSA (1,000,10,000 ng/ml). Spontaneous and evoked extracellular field potentials were recorded simultaneously from the dentate gyrus (DG) and CA3 hippocampal regions. Evoked synaptic responses were elicited by stimulation of the entorhinal cortex/perforant pathway. Results: CSA elicited spontaneous or stimulation-induced epileptiform activity in the DG or CA3 region of ,40% of slices, consisting of brief repetitive "interictal" discharges or prolonged stereotypical "ictal" discharges. Mean latency to epileptiform activity was ,100 min after onset of CSA application. The interictal discharges were inhibited by the non-NMDA antagonist, NBQX. Similar epileptiform activity was observed in low-magnesium ACSF without CSA. In control ACSF alone, epileptiform activity was not seen, except for rare spontaneous potentials in the DG. Conclusions: Direct effects of CSA on neuronal excitability and synaptic transmission may contribute to seizures seen in clinical CSA neurotoxicity. [source]


International conference on the healthy effect of virgin olive oil

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 7 2005

Summary 1Ageing represents a great concern in developed countries because the number of people involved and the pathologies related with it, like atherosclerosis, morbus Parkinson, Alzheime's disease, vascular dementia, cognitive decline, diabetes and cancer. 2Epidemiological studies suggest that a Mediterranean diet (which is rich in virgin olive oil) decreases the risk of cardiovascular disease. 3The Mediterranean diet, rich in virgin olive oil, improves the major risk factors for cardiovascular disease, such as the lipoprotein profile, blood pressure, glucose metabolism and antithrombotic profile. Endothelial function, inflammation and oxidative stress are also positively modulated. Some of these effects are attributed to minor components of virgin olive oil. Therefore, the definition of the Mediterranean diet should include virgin olive oil. 4Different observational studies conducted in humans have shown that the intake of monounsaturated fat may be protective against age-related cognitive decline and Alzheimer's disease. 5Microconstituents from virgin olive oil are bioavailable in humans and have shown antioxidant properties and capacity to improve endothelial function. Furthermore they are also able to modify the haemostasis, showing antithrombotic properties. 6In countries where the populations fulfilled a typical Mediterranean diet, such as Spain, Greece and Italy, where virgin olive oil is the principal source of fat, cancer incidence rates are lower than in northern European countries. 7The protective effect of virgin olive oil can be most important in the first decades of life, which suggests that the dietetic benefit of virgin olive oil intake should be initiated before puberty, and maintained through life. 8The more recent studies consistently support that the Mediterranean diet, based in virgin olive oil, is compatible with a healthier ageing and increased longevity. However, despite the significant advances of the recent years, the final proof about the specific mechanisms and contributing role of the different components of virgin olive oil to its beneficial effects requires further investigations. [source]


Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern

FEBS JOURNAL, Issue 11 2010
Juliane Schröter
Atrial natriuretic peptide (ANP), via its guanylyl cyclase A (GC-A) receptor and intracellular guanosine 3,,5,-cyclic monophosphate production, is critically involved in the regulation of blood pressure. In patients with chronic heart failure, the plasma levels of ANP are increased, but the cardiovascular actions are severely blunted, indicating a receptor or postreceptor defect. Studies on metabolically labelled GC-A-overexpressing cells have indicated that GC-A is extensively phosphorylated, and that ANP-induced homologous desensitization of GC-A correlates with receptor dephosphorylation, a mechanism which might contribute to a loss of function in vivo. In this study, tandem MS analysis of the GC-A receptor, expressed in the human embryonic kidney cell line HEK293, revealed unambiguously that the intracellular domain of the receptor is phosphorylated at multiple residues: Ser487, Ser497, Thr500, Ser502, Ser506, Ser510 and Thr513. MS quantification based on multiple reaction monitoring demonstrated that ANP-provoked desensitization was accompanied by a complex pattern of receptor phosphorylation and dephosphorylation. The population of completely phosphorylated GC-A was diminished. However, intriguingly, the phosphorylation of GC-A at Ser487 was selectively enhanced after exposure to ANP. The functional relevance of this observation was analysed by site-directed mutagenesis. The substitution of Ser487 by glutamate (which mimics phosphorylation) blunted the activation of the GC-A receptor by ANP, but prevented further desensitization. Our data corroborate previous studies suggesting that the responsiveness of GC-A to ANP is regulated by phosphorylation. However, in addition to the dephosphorylation of the previously postulated sites (Ser497, Thr500, Ser502, Ser506, Ser510), homologous desensitization seems to involve the phosphorylation of GC-A at Ser487, a newly identified site of phosphorylation. The identification and further characterization of the specific mechanisms involved in the downregulation of GC-A responsiveness to ANP may have important pathophysiological implications. Structured digital abstract ,,MINT-7713870, MINT-7713887: PMCA (uniprotkb:P20020) and GC-A (uniprotkb:P18910) colocalize (MI:0403) by fluorescence microscopy (MI:0416) [source]


The role of genome diversity and immune evasion in persistent infection with Helicobacter pylori

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2005
Cara L. Cooke
Abstract Helicobacter pylori is an important human pathogen that chronically colonizes the stomach of half the world's population. Infection typically occurs in childhood and persists for decades, if not for the lifetime of the host. How is bacterial persistence possible despite a vigorous innate and adaptive immune response? Here we describe the complex role of bacterial diversity and specific mechanisms to avoid or subvert host immunity in bacterial persistence. We suggest that H. pylori finely modulates the extent to which it interacts with the host in order to promote chronic infection, and that it uses diverse mechanisms to do so. [source]


Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2004
Héctor M. Alvarez
Abstract Rhodococcus opacus PD630 was investigated for physiological and morphological changes under water stress challenge. Gluconate- and hexadecane-grown cells were extremely resistant to these conditions, and survival accounted for up to 300 and 400 days; respectively, when they were subjected to slow air-drying. Results of this study suggest that strain PD630 has specific mechanisms to withstand water stress. Water-stressed cells were sensitive to the application of ethanol, high temperatures and oxidative stress, whereas they exhibited cross-protection solely against osmotic stress during the first hours of application. Results indicate that the resistance programme for water stress in R. opacus PD630 includes the following physiological and morphological changes, among others: (1) energetic adjustments with drastic reduction of the metabolic activity (,39% decrease during the first 24 h and about 90% after 190 days under dehydration), (2) endogenous metabolism using intracellular triacylglycerols for generating energy and precursors, (3) biosynthesis of different osmolytes such as trehalose, ectoine and hydroxyectoine, which may achieve a water balance through osmotic adjustment and may explain the overlap between water and osmotic stress, (4) adjustments of the cell-wall through the turnover of mycolic acid species, as preliminary experiments revealed no evident changes in the thickness of the cell envelope, (5) formation of short fragmenting-cells as probable resistance forms, (6) production of an extracellular slime covering the surface of colonies, which probably regulates internal and external c anges in water potential, and (7) formation of compact masses of cells. This contributes to understanding the water stress resistance processes in the soil bacterium R. opacus PD630. [source]


Does the Impact of Managed Care on Substance Abuse Treatment Services Vary by Provider Profit Status?

HEALTH SERVICES RESEARCH, Issue 6p1 2005
Todd A. Olmstead
Objective. To extend our previous research by determining whether, and how, the impact of managed care (MC) on substance abuse treatment (SAT) services differs by facility ownership. Data Sources. The 2000 National Survey of Substance Abuse Treatment Services, which is designed to collect data on service offerings and other characteristics of SAT facilities in the U.S. These data are merged with data from the 2002 Area Resource File, a county-specific database containing information on population and MC activity. We use data on 10,513 facilities, virtually a census of all SAT facilities. Study Design. For each facility ownership type (for-profit [FP], not-for-profit [NFP], public), we estimate the impact of MC on the number and types of SAT services offered. We use instrumental variables techniques that account for possible endogeneity between facilities' involvement in MC and service offerings. Principal Findings. We find that the impact of MC on SAT service offerings differs in magnitude and direction by facility ownership. On average, MC causes FPs to offer approximately four additional services, causes publics to offer approximately four fewer services, and has no impact on the number of services offered by NFPs. The differential impact of MC on FPs and publics appears to be concentrated in therapy/counseling, medical testing, and transitional services. Conclusion. Our findings raise policy concerns that MC may reduce the quality of care provided by public SAT facilities by limiting the range of services offered. On the other hand, we find that FP clinics increase their range of services. One explanation is that MC results in standardization of service offerings across facilities of different ownership type. Further research is needed to better understand both the specific mechanisms of MC on SAT and the net impact on society. [source]


Knowledge transfer in globally distributed teams: the role of transactive memory

INFORMATION SYSTEMS JOURNAL, Issue 6 2008
Ilan Oshri
Abstract This paper explores the role of transactive memory in enabling knowledge transfer between globally distributed teams. While the information systems literature has recently acknowledged the role transactive memory plays in improving knowledge processes and performance in colocated teams, little is known about its contribution to distributed teams. To contribute to filling this gap, knowledge-transfer challenges and processes between onsite and offshore teams were studied at TATA Consultancy Services. In particular, the paper describes the transfer of knowledge between onsite and offshore teams through encoding, storing and retrieving processes. An in-depth case study of globally distributed software development projects was carried out, and a qualitative, interpretive approach was adopted. The analysis of the case suggests that in order to overcome differences derived from the local contexts of the onsite and offshore teams (e.g. different work routines, methodologies and skills), some specific mechanisms supporting the development of codified and personalized ,directories' were introduced. These include the standardization of templates and methodologies across the remote sites as well as frequent teleconferencing sessions and occasional short visits. These mechanisms contributed to the development of the notion of ,who knows what' across onsite and offshore teams despite the challenges associated with globally distributed teams, and supported the transfer of knowledge between onsite and offshore teams. The paper concludes by offering theoretical and practical implications. [source]


The modern furies: projection and superego subversion in the moral justification of violence

INTERNATIONAL JOURNAL OF APPLIED PSYCHOANALYTIC STUDIES, Issue 1 2007
James Poulton
Abstract The moral rationalization of violence and prejudice has long been viewed by psychoanalysis as resulting from a subversion of superego functioning. Yet, the specific mechanisms by which such subversions occur have remained obscure. In this paper, the intrapsychic and intersubjective dynamics of rationalizations of violence are explored as they arise in the dyadic interactions of a married couple in psychoanalytic psychotherapy. Those dynamics are then extrapolated to larger group processes (e.g. sects, races, nations, etc.), with the aim of developing a more complete understanding of the cycles of hatred and violence that can occur between them. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The adolescent origins of substance use disorders

INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, Issue S1 2008
Matt McGue
Abstract Although early use of alcohol during adolescence has been consistently associated with increased risk of alcoholism in adulthood, the specific mechanisms that underlie this association remain unclear. We describe a program of epidemiological twin-family research that shows that early use of alcohol is best conceptualized as an indicator of a more general propensity to engage in adolescent problem behavior. Adolescent problem behavior, in turn, is a risk factor for a broad range of adult externalizing disorders, of which alcoholism is but one manifestation. These findings are shown to be consistent with a dual-process model whereby early adolescent problem behavior is associated with increased risk of adult psychopathology because both are indicators of a common inherited liability and because early adolescent problem behavior increases the likelihood an adolescent is exposed to high-risk environments. We conclude with a discussion of the importance of cross-cultural research, which may be especially informative for identifying the consequences of early adolescent drinking. Copyright © 2008 John Wiley & Sons, Ltd. [source]


RNA damage and surveillance under oxidative stress

IUBMB LIFE, Issue 10 2006
Zhongwei Li
Abstract RNA damage has been recently reported to increase under oxidative stress and in patients with many degenerative diseases, which has drawn attention to the consequences of RNA oxidation at the molecular and cellular levels. Under similar conditions the levels of oxidative damage in RNA are usually higher than those in DNA, which may impair protein synthesis or other RNA function. Therefore, accumulation of RNA damage must be prevented and cells have developed specific mechanisms to remove oxidatively-damaged RNA and to block incorporation of oxidized nucleotides during RNA synthesis. Removal of oxidized RNA may be mediated by specific proteins that recognize oxidative lesions and direct the RNA degradation machinery to eliminate the damaged RNAs. During RNA synthesis, oxidized ribonucleotides are hydrolyzed or discriminated from normal ribonucleotides during transcription, preventing their incorporation into RNA. Collective evidence suggests that RNA oxidative damage is a challenging and persistent problem normally controlled through RNA surveillance mechanisms, making them critical to maintaining cellular health and preventing disease. iubmb Life, 58: 581-588, 2006 [source]


Redox Reactions and Electron Transfer Across the Red Cell Membrane

IUBMB LIFE, Issue 7 2003
Eleanor Kennett
Abstract Plasma membrane electron transport systems appear to be ubiquitous. These systems are implicated in hormone signal transduction, cell growth and differentiation events as well as protection from oxidative stress. The red blood cell is constantly exposed to oxidative stress; protection against the reactive species generated during this process may be the main role of its membrane electron transport systems. Membrane redox activity has been studied for over three-quarters of a century, and yet many questions remain regarding its identity and likely roles: are electron transfers by distinct and specific mechanisms; what are the physiological donors and acceptors; and how do these systems affect metabolism? Current evidence suggests that the human erythrocyte membrane contains a number of distinct electron transfer systems, some of which, at least, involve membrane proteins, and NADH or ascorbate as electron donors. The activity of these systems appears to be closely related to the metabolic state of the cell, suggesting that mediation of reducing equivalents across the plasma membrane allows redox buffering of each environment, intra- and extracellular, by the other. We have decided to study this from a new perspective, NMR spectroscopy the area of our own technical expertise, hence this review is slanted towards this more recent analysis. IUBMB Life, 55: 375-385, 2003 [source]


Retardation of setting of plaster of Paris by organic acids: Understanding the mechanism through molecular modeling

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2004
Jörg-Rüdiger Hill
Abstract To develop an understanding of the action of specific formulations, the growth of gypsum crystals under the influence of retardation agents (tartaric and citric acid) has been studied using molecular modeling. Surface energies of gypsum and plaster crystal faces were calculated using established protocols. The crystal morphology predicted for gypsum crystals in the absence of retardation agents is in excellent agreement with experiment. The simulations show that only in an alkaline environment is the crystal morphology of gypsum changed by retardation agents. The simulations provide a detailed description of retardation, for example, the specific mechanisms by which tartaric and citric acid retard setting of gypsum and how they differ. At high pH meso, D(,), and L(+) tartaric acid inhibit both the growth of gypsum and the dissolution of plaster while at low pH tartaric acid and citric acid will principally inhibit the growth of gypsum. The simulations provide a molecular rationalization for a range of experimental observations and a basis for the selection of alternate retardation agents. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1438,1448, 2004 [source]


Moral emotions and bullying: A cross-national comparison of differences between bullies, victims and outsiders

AGGRESSIVE BEHAVIOR, Issue 6 2003
Ersilia Menesini
Abstract This study aims to analyse the role of moral emotions and reasoning in relation to children's behaviour in a bullying situation. On the basis of a peer nomination questionnaire [Salmivalli et al., 1996; Sutton and Smith, 1999], children from three different cities (Seville, Florence, and Cosenza) were assigned to one of three different status groups: bullies, victims, or outsiders. Subsequently they were interviewed about their feelings in relation to the task of putting themselves in the role of the bully in a bullying scenario. Specifically, emotions such as guilt and shame, expressed in a sense of moral responsibility, and indifference and pride, expressed in an attitude of moral disengagement, were investigated. Results showed significant differences between bullies, victims, and outsiders, with regard to moral disengagement, at both the affective and cognitive levels. Across the three cities, bullies, as compared to victims and outsiders, showed a higher level of disengagement emotions and motives when they were asked to put themselves in the role of bully. At a more detailed level, analyses of specific mechanisms of moral disengagement revealed that bullies possessed a main profile of egocentric reasoning. Besides the differences between bullies and victims, cross-cultural differences were also present. Compared to children from Seville, children from the south of Italy (Cosenza) attributed higher disengagement to the bullies. Findings are discussed in relation to specific cultural characteristics of this area. Aggr. Behav. 29:515,530, 2003. © 2003 Wiley-Liss, Inc. [source]


Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: Growth factor production

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2002
Xiaoguang Chen
Abstract Treatment of traumatic brain injury (TBI) with bone marrow stromal cells (MSCs) improves functional outcome in the rat. However, the specific mechanisms by which introduced MSCs provide benefit remain to be elucidated. Currently, the ability of therapeutically transplanted MSCs to replace injured parenchymal CNS tissue appears limited at best. Tissue replacement, however, is not the only possible compensatory avenue in cell transplantation therapy. Various growth factors have been shown to mediate the repair and replacement of damaged tissue, so trophic support provided by transplanted MSCs may play a role in the treatment of damaged tissue. We therefore investigated the temporal profile of various growth factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF), within cultures of human MSCs (hMSCs) conditioned with cerebral tissue extract from TBI. hMSCs were cultured with TBI extracts of rat brain in vitro and quantitative sandwich enzyme-linked immunosorbent assays (ELISAs) were performed. TBI-conditioned hMSCs cultures demonstrated a time-dependent increase of BDNF, NGF, VEGF, and HGF, indicating a responsive production of these growth factors by the hMSCs. The ELISA data suggest that transplanted hMSCs may provide therapeutic benefit via a responsive secretion of an array of growth factors that can foster neuroprotection and angiogenesis. © 2002 Wiley-Liss, Inc. [source]