Species Groups (species + groups)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Species Groups

  • mixed species groups


  • Selected Abstracts


    Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South Africa

    GLOBAL ECOLOGY, Issue 3 2002
    Adrian L. V. Davis
    Abstract Aim Species assemblages with high proportions of localized taxa occur in regional islands with a history of strong eco-climatic separation from adjacent systems. Current disturbance in such islands of relictualism or endemism disrupts the distinctive local character in favour of regionally distributed taxa with a wider range of tolerances. However, rehabilitation of the system should restore the localized biota. Thus, we used biogeographical composition to assess progress towards restoration of the dung beetle fauna associated with such an island of endemism following dredge-mining. Location The study was conducted in natural coastal dune forest and a 23-year chronosequence of regenerating dune vegetation in the Maputaland centre of endemism, KwaZulu-Natal, South Africa. Methods Dung beetles were trapped in eight stands of regenerating vegetation of different ages (< 1 year to ~21 years) and in four stands of natural dune forest with differing ecological characteristics defined by measurements of vegetative physiognomy and microclimate. Species groups defined from multivariate analysis of biogeographical distribution patterns and vegetation associations were used to demonstrate quantitative compositional changes in the dung beetle assemblages across the chronosequence to natural forest. Results Three biogeographical groups were defined. One group comprised species widespread in southern Africa or both southern and east Africa. The other two groups were endemic, one to the east coast and the other to Maputaland. There was a general trend from dominance by regionally distributed dung beetle taxa to dominance by locally distributed taxa across the chronosequence of regenerating vegetation from grassland, to open Acacia karroo thicket, to dense A. karroo- dominated woodland. However, this trend was linked closely to the relative physiognomic and microclimatic similarity between the regenerating vegetation and natural forest. Thus, proportions of locally distributed taxa were lower in older chronosequence woodland (~18,~21 years) with its low canopy cover and open understorey than in dense early chronosequence woodland (~9,~12 years), which is physiognomically and microclimatically closer to species-diverse natural forest with its dense canopy and understorey. Overall, the present dung beetle community comprises five species groups. Single widespread (21 spp.) and endemic groups (14 spp.) showed similar patterns of association with early chronosequence grassland and open thicket stands. A single widespread (3 spp.) and two endemic shade-associated groups (3 and 11 spp.) showed differing patterns of association centred, respectively, in late chronosequence woodland, natural forest, or all shaded stands. Main conclusions At 23 years, vegetative regeneration is still at an early stage, but abundant activity of most, although not all species recorded in natural forest, is recovered with the closure of the woodland canopy at ~9 years. Compositional differences with respect to natural forest vary closely with vegetative physiognomy and its effect on the microclimate. Therefore, full compositional recovery is dependent on the re-establishment of natural forest physiognomy and microclimate. [source]


    Phylogenetic Reanalysis of the Saudi Gazelle and Its Implications for Conservation

    CONSERVATION BIOLOGY, Issue 4 2001
    Robert L. Hammond
    The Saudi gazelle ( Gazella saudiya) was endemic to the Arabian peninsula but is now considered extinct in the wild and is potentially a candidate for captive breeding and reintroduction. Using 375 base pairs of mitochondrial DNA (mtDNA) cytochrome b gene derived from museum samples collected from the wild prior to the presumed extinction of this species, we show that G. saudiya is the sister taxon of the African dorcas gazelle ( G. dorcas). Reciprocal monophyly of G. saudiya mtDNA haplotypes with G. dorcas, coupled with morphological distinctiveness, suggests that it is an evolutionarily significant unit. These data indicate that captive populations identified previously as potential sources of G. saudiya for captive breeding appear incorrectly designated and are irrelevant to the conservation of G. saudiya. The polymerase chain reaction,restriction fragment length polymorphism ( PCR-RFLP) analysis of several private collections of living gazelles in Saudi Arabia provides no evidence for the survival of G. saudiya. We recommend that field surveys be undertaken to establish whether G. saudiya is indeed extinct in the wild and that other private collections within the Arabian peninsula be screened genetically. We urge caution when captive animals of unknown provenance are used to investigate the phylogenetics of cryptic species groups. Resumen: La identificación de poblaciones taxonómicamente apropiadas de especies en peligro para programas de reproducción en cautiverio y de reintroducción es fundamental para su éxito. La Gacela Saudi (Gazella saudiya) fue endémica a la península de Arabia pero ahora está considerada como extinta en su medio y es un candidato potencial para reproducción en cautiverio y reintroducción. Utilizando 375 pares de bases de ADN mitocondrial (ADNmt) del gene citocromo b derivados de muestras de museos colectadas en el medio silvestre antes de la extinción de la especie, mostramos que G. saudiya es el taxón hermano de la gacela dorcas africana (G. dorcas). La monofilia recíproca de haplotipos de ADNmt de G. saudiya con G. dorcas, aunado a diferencias morfológicas, sugiere que es una unidad evolutiva significativa. Estos datos indican que las poblaciones cautivas identificadas previamente como fuente potencial de G. saudiya para reproducción en cautiverio están incorrectamente identificadas y son irrelevantes para la conservación de G. saudiya. El análisis PCR-RFLP de varias colecciones privadas de gacelas vivas en Arabia Saudita no proporcionan evidencia para la supervivencia de G. saudiya. Recomendamos que se realicen muestreos en el campo para establecer si en efecto G. saudiya está extinta en su hábitat y que se examinen genéticamente las otras colecciones privadas en la península Arábiga. Recomendamos precaución cuando animales cautivos de origen desconocido son utilizados para investigar la filogenia de grupos de especies crípticas. [source]


    Priorities and paradigms: directions in threatened species recovery

    CONSERVATION LETTERS, Issue 3 2009
    Sue V. Briggs
    Abstract Recovering threatened species is a key challenge for conservation managers, policy makers, and researchers. This article describes a practical framework for assigning priorities for recovery of threatened species according to cost-effectiveness of recovery strategies for species groups. The framework has the following steps: (1) determine the conservation goal,persistence in the wild of the largest number of threatened species with the funds available; (2) assign threatened species to species recovery groups according to their characteristics and threats,small-population species that require actions at sites and declining-population species that require actions across landscapes; (3) identify the recovery strategies and their component actions for the species groups; (4) cost the recovery strategies for the species groups; (5) determine the cost-effectiveness of the recovery strategies for the species groups,the number of species recovered divided by the cost of the strategies; (6) assign priorities to the recovery strategies according to their cost-effectiveness; (7) allocate funds to the recovery strategies that maximize the number of threatened species recovered for the funds available; and (8) undertake the funded recovery strategies and actions. The framework is illustrated with an example. [source]


    Using multi-scale species distribution data to infer drivers of biological invasion in riparian wetlands

    DIVERSITY AND DISTRIBUTIONS, Issue 1 2010
    Jane A. Catford
    Abstract Aim, Biological invasion is a major conservation problem that is of interest to ecological science. Understanding mechanisms of invasion is a high priority, heightened by the management imperative of acting quickly after species introduction. While information about invading species' ecology is often unavailable, species distribution data can be collected near the onset of invasion. By examining distribution patterns of exotic and native plant species at multiple spatial scales, we aim to identify the scale (of those studied) that accounts for most variability in exotic species abundance, and infer likely drivers of invasion. Location, River Murray wetlands, south-eastern Australia. Methods, A nested, crossed survey design was used to determine the extent of variation in wetland plant abundance, grazing intensity and water depth at four spatial scales (reaches, wetland clumps, wetlands, wetland sections), and among three Depth-strata. We examined responses of exotic and native species groups (grouped into terrestrial and amphibious taxa), native weeds and 10 individual species using hierarchical ANOVA. Results, As a group dominated by terrestrial taxa, exotic species cover varied at reach-, wetland- and section-scales. This likely reflects differences in abiotic characteristics and propagule pressure at these scales. Groups based on native species did not vary at any scale examined. Cover of 10 species mostly varied among and within wetlands (patterns unrelated to species' origin or functional group), but species' responses differed, despite individual plants being similar in size. While flora mostly varied among wetlands, exotic cover varied most among reaches (26%), which was attributed to hydrological modification and human activities. Main conclusions, Multi-scale surveys can rapidly identify factors likely to affect species' distributions and can indicate where future research should be directed. By highlighting disproportionate variation in exotic cover among reaches, this study suggests that flow regulation and human-mediated dispersal facilitate exotic plant invasion in River Murray wetlands. [source]


    Species richness patterns and metapopulation processes , evidence from epiphyte communities in boreo-nemoral forests

    ECOGRAPHY, Issue 2 2006
    Swantje Löbel
    For several epiphyte species, dispersal limitation and metapopulation dynamics have been suggested. We studied the relative importance of local environmental conditions and spatial aggregation of species richness of facultative and obligate epiphytic bryophytes and lichens within two old-growth forests in eastern Sweden. The effect of the local environment was analyzed using generalized linear models (GLM). We tested whether species richness was spatially structured by fitting variogram models to the residuals of the GLM. In addition, we analyzed the species-area relationship (area=tree diameter). Different environmental variables explained the richness of different species groups (bryophytes vs lichens, specialists vs generalists, sexual vs asexual dispersal). In most groups, the total variation explained by environmental variables was higher than the variation explained by the spatial model. Spatial aggregation was more pronounced in asexually than in sexually dispersed species. Bryophyte species richness was only poorly predicted by area, and lichen species richness was not explained by area at all. Spatial aggregation may indicate effects of dispersal limitation and metapopulation dynamics on community species richness. Our results suggest that species groups differ in habitat requirements and dispersal abilities; there were indications that presence of species with different dispersal strategies is linked to the age of the host tree. Separate analyses of the species richness of species groups that differ in the degree of habitat specialization and dispersal ability give insights into the processes determining community species richness. The poor species-area relationship, especially in lichens, may indicate species turnover rather than accumulation during the lifetime of the host tree. Epiphyte species extinctions may be mainly caused by deterministic processes, e.g. changes in habitat conditions as the host tree grows, ages and dies, rather than by stochastic population processes. [source]


    Review of the genus Leucophenga Mik (Diptera: Drosophilidae) in India, with descriptions of five new species from northern India

    ENTOMOLOGICAL SCIENCE, Issue 4 2005
    Rajendra S. FARTYAL
    Abstract A review of all Indian Leucophenga species is given, including descriptions of five new species: L. champawatensis, L. chaubattiaensis, L. kumaonensis, L. nainae and L. neointerrupta. New collection records of some species from India and adjacent countries; namely, Myanmar and China, and distribution range of each species within India are also given. Keys to species groups and species occurring in India are provided. [source]


    Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing

    ENVIRONMENTAL MICROBIOLOGY, Issue 7 2007
    Claudia Dalmastri
    Summary The Burkholderia cepacia complex (BCC) comprises at least nine closely related species of abundant environmental microorganisms. Some of these species are highly spread in the rhizosphere of several crop plants, particularly of maize; additionally, as opportunistic pathogens, strains of the BCC are capable of colonizing humans. We have developed and validated a multilocus sequence typing (MLST) scheme for the BCC. Although widely applied to understand the epidemiology of bacterial pathogens, MLST has seen limited application to the population analysis of species residing in the natural environment; we describe its novel application to BCC populations within maize rhizospheres. 115 BCC isolates were recovered from the roots of different maize cultivars from three different Italian regions over a 9-year period (1994,2002). A total of 44 sequence types (STs) were found of which 41 were novel when compared with existing MLST data which encompassed a global database of 1000 clinical and environmental strains representing nearly 400 STs. In this study of rhizosphere isolates approximately 2.5 isolates per ST was found, comparable to that found for the whole BCC population. Multilocus sequence typing also resolved inaccuracies associated with previous identification of the maize isolates based on recA gene restriction fragment length polymorphims and species-specific polymerase chain reaction. The 115 maize isolates comprised the following BCC species groups, B. ambifaria (39%), BCC6 (29%), BCC5 (10%), B. pyrrocinia (8%), B. cenocepacia IIIB (7%) and B. cepacia (6%), with BCC5 and BCC6 potentially constituting novel species groups within the complex. Closely related clonal complexes of strains were identified within B. cepacia, B. cenocepacia IIIB, BCC5 and BCC6, with one of the BCC5 clonal complexes being distributed across all three sampling sites. Overall, our analysis demonstrates that the maize rhizosphere harbours a massive diversity of novel BCC STs, so that their addition to our global MLST database increased the ST diversity by 10%. [source]


    Courtship in the Zig-Zag Salamander (Plethodon dorsalis): Insights into a Transition in Pheromone-Delivery Behavior

    ETHOLOGY, Issue 9 2005
    Amy L. Picard
    Courtship in plethodontid salamanders includes the delivery of male courtship pheromones by two distinct modes. Within the eastern Plethodon clade of the tribe Plethodontini, members of the Plethodon cinereus species group use an ancestral ,vaccination' mode of delivery, while members of the P. glutinosus group use an olfactory delivery mode. In order to shed light on this transition in delivery mode, I observed courtship behavior in P. dorsalis, a species that is phylogenetically intermediate to the P. cinereus and P. glutinosus groups. My observations indicate that P. dorsalis also is intermediate to the P. cinereus and P. glutinosus species groups in terms of courtship behavior. The context of delivery of male courtship pheromones in P. dorsalis is similar to that of the P. cinereus species group; however, the mode of pheromone delivery in P. dorsalis is olfactory. Thus, a transition in the context of pheromone delivery underlies the more obvious change in pheromone delivery mode. I discuss these findings in terms of the evolution of courtship pheromone delivery across the eastern Plethodon clade. I also report the first observations of ,premature' spermatophore deposition by male plethodontids. [source]


    A new approach to prioritizing marine fish and shellfish populations for conservation

    FISH AND FISHERIES, Issue 4 2001
    Einar Eg Nielsen
    Abstract There has been increasing awareness of the vulnerability of marine organisms to population extirpation and species extinction. While very few documented cases of species extinction exist in the marine environment, it is anticipated that managers will face the dilemma of prioritizing populations of marine fish and shellfish for protection in the near future. Current prioritization procedures have been developed from salmonid models with the intent of applying them to all marine organisms, and in some cases to freshwater and terrestrial taxa. In this review we provide evidence for the relevance of such a process for marine species and further suggest five broad categories of marine organisms that have distinctive traits influencing their genetic structure. The current prioritization models have been adapted to account for each of these species groups. Emphasis is placed on ,Classical Marine Species' which represent the opposite end of the continuum from the salmon model, displaying high within-population genetic variance. From this category, three cod (Gadus morhua) stocks were selected to evaluate a revised scheme developed specifically for ,Classical Marine Species' that includes performance measures such as (i) reduction in number of spawning populations; (ii) reduction of Ne : Nc (ratio of effective to census population size); (iii) changes in life-history traits; (iv) critical density for spawning success; and (v) patchy vs. continuous distribution pattern. When the salmonid scheme was applied, the cod examples were allocated low values, indicating that they were not under threat. However, when the revised scheme was applied, all three cod stocks were allocated high values, indicating that the revised scheme was more reflective of the particular life-history traits of this category of organisms. [source]


    Fish community characteristics of the lower Gambia River floodplains: a study in the last major undisturbed West African river

    FRESHWATER BIOLOGY, Issue 2 2009
    VASILIS LOUCA
    Summary 1.,The Gambia River is the last major West African river that has not been impounded. However, a hydroelectric dam is being constructed and substantial changes to the hydrology and ecology of the system are expected. 2.,Little information is available on the impact of water impoundments in semi-arid regions on downstream floodplain fish communities, due to the scarcity of pre-intervention data. Because profound impacts on physical habitat, salinity and nutrient transport can occur downstream of such impoundments, a knowledge of the species-habitat associations of biota such as fishes is necessary for understanding likely changes and how to limit them. 3.,Fish were sampled using cast and hand nets along two transects on the floodplain, and with fyke nets in two ,bolongs' (creeks) from May to November 2005 and 2006 in the lower reaches of the Gambia River, close to the salt water front where ecological changes due to the construction of the dam are likely to be pronounced. 4.,Greatest fish species richness was associated with low conductivity, low pH and deep water. Bolongs held greater species richness compared with other floodplain habitats, probably because they acted as conduits for fish moving on and off the floodplain. Species richness and catch biomass increased rapidly following the first rains and then declined. 5.,Using a multivariate analysis, three main species groups were identified on the floodplain; one associated with deeper water, one with less brackish water and one with shallow, open water. Tilapia guineensis was the commonest species on the floodplains. 6.,The floodplains provide nursery habitats as many fish captured were immature, particularly for species where adults are mainly encountered in the main channel. Several small-sized floodplain specialists were also represented by a high proportion of mature individuals. 7.,Impoundment is expected to reduce seasonal flooding of the floodplain in the lower Gambia River, downstream of the impoundment, resulting in reduced occurrence of aquatic habitats, especially bolongs, together with lower dissolved oxygen and increased salinity, leading to alteration of the floodplain fish communities, benefiting salt-tolerant species, reducing overall species richness and probably reducing floodplain fish production. [source]


    Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits

    FRESHWATER BIOLOGY, Issue 2 2000
    Philippe Usseglio-Polatera
    Summary 1Relating species traits to habitat characteristics can provide important insights into the structure and functioning of stream communities. However, trade-offs among species traits make it difficult to predict accurately the functional diversity of freshwater communities. Many authors have pointed to the value of working with groups of organisms as similar as possible in terms of relationships among traits and have called for definition of groups of organisms with similar suites of attributes. 2We used multivariate analyses to examine separately the relationships among 11 biological traits and among 11 ecological traits of 472 benthic macroinvertebrate taxa (mainly genera). The main objective was to demonstrate (1) potential trade-offs among traits; (2) the importance of the different traits to separate systematic units or functional groupings; and (3) uniform functional groups of taxa that should allow a more effective use of macroinvertebrate biological and ecological traits. 3We defined eight groups and 15 subgroups according to a biological trait ordination which highlighted size (large to small), reproductive traits (K to r strategists), food (animal to plant material) and feeding habits (predator to scraper and/or deposit feeder) as ,significant' factors determining the ordination of taxa. This ordination partly preserved phylogenetic relationships among groups. 4Seven ecological groups and 13 ecological subgroups included organisms with combinations of traits which should be successively more adequate in habitats from the main channel to temporary waters, and from the crenon to the potamic sections of rivers, and to systems situated outside the river floodplain. These gradients corresponded to a gradual shift from (1) rheophilic organisms that lived in the main channel of cold oligotrophic mountain streams to (2) animals that preferred eutrophic habitats of still or temporary waters in lowlands. The groups with similar ecological traits had a more diverse systematic structure than those with similar biological traits. 5Monitoring and assessment tools for the management of water resources are generally more effective if they are based on a clear understanding of the mechanisms that lead to the presence or absence of species groups in the environment. We believe that groups with similar relationships among their species traits may be useful in developing tools that measure the functional diversity of communities. [source]


    Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South Africa

    GLOBAL ECOLOGY, Issue 3 2002
    Adrian L. V. Davis
    Abstract Aim Species assemblages with high proportions of localized taxa occur in regional islands with a history of strong eco-climatic separation from adjacent systems. Current disturbance in such islands of relictualism or endemism disrupts the distinctive local character in favour of regionally distributed taxa with a wider range of tolerances. However, rehabilitation of the system should restore the localized biota. Thus, we used biogeographical composition to assess progress towards restoration of the dung beetle fauna associated with such an island of endemism following dredge-mining. Location The study was conducted in natural coastal dune forest and a 23-year chronosequence of regenerating dune vegetation in the Maputaland centre of endemism, KwaZulu-Natal, South Africa. Methods Dung beetles were trapped in eight stands of regenerating vegetation of different ages (< 1 year to ~21 years) and in four stands of natural dune forest with differing ecological characteristics defined by measurements of vegetative physiognomy and microclimate. Species groups defined from multivariate analysis of biogeographical distribution patterns and vegetation associations were used to demonstrate quantitative compositional changes in the dung beetle assemblages across the chronosequence to natural forest. Results Three biogeographical groups were defined. One group comprised species widespread in southern Africa or both southern and east Africa. The other two groups were endemic, one to the east coast and the other to Maputaland. There was a general trend from dominance by regionally distributed dung beetle taxa to dominance by locally distributed taxa across the chronosequence of regenerating vegetation from grassland, to open Acacia karroo thicket, to dense A. karroo- dominated woodland. However, this trend was linked closely to the relative physiognomic and microclimatic similarity between the regenerating vegetation and natural forest. Thus, proportions of locally distributed taxa were lower in older chronosequence woodland (~18,~21 years) with its low canopy cover and open understorey than in dense early chronosequence woodland (~9,~12 years), which is physiognomically and microclimatically closer to species-diverse natural forest with its dense canopy and understorey. Overall, the present dung beetle community comprises five species groups. Single widespread (21 spp.) and endemic groups (14 spp.) showed similar patterns of association with early chronosequence grassland and open thicket stands. A single widespread (3 spp.) and two endemic shade-associated groups (3 and 11 spp.) showed differing patterns of association centred, respectively, in late chronosequence woodland, natural forest, or all shaded stands. Main conclusions At 23 years, vegetative regeneration is still at an early stage, but abundant activity of most, although not all species recorded in natural forest, is recovered with the closure of the woodland canopy at ~9 years. Compositional differences with respect to natural forest vary closely with vegetative physiognomy and its effect on the microclimate. Therefore, full compositional recovery is dependent on the re-establishment of natural forest physiognomy and microclimate. [source]


    Molecular phylogeny of Diabrotica beetles (Coleoptera: Chrysomelidae) inferred from analysis of combined mitochondrial and nuclear DNA sequences

    INSECT MOLECULAR BIOLOGY, Issue 4 2001
    T. L. Clark
    Abstract The phylogenetic relationships of thirteen Diabrotica (representing virgifera and fucata species groups) and two outgroup Acalymma beetle species (Coleoptera: Chrysomelidae) were inferred from the phylogenetic analysis of a combined data set of 1323 bp of mitochondrial DNA (mtDNA) cytochrome oxidase subunit 1 (COI) and the entire second internal transcribed spacer region (ITS-2) of nuclear ribosomal DNA of 362 characters. Species investigated were D. adelpha, D. balteata, D. barberi, D. cristata, D. lemniscata, D. longicornis, D. porracea, D. speciosa, D. undecimpunctata howardi, D. u. undecimpunctata, D. virgifera virgifera, D. v. zeae, D. viridula, and outgroup A. blandulum and A. vittatum. Maximum parsimony (MP), minimum evolution (ME), and maximum likelihood (ML) analyses of combined COI and ITS-2 sequences clearly place species into their traditional morphological species groups with MP and ME analyses resulting in identical topologies. Results generally confer with a prior work based on allozyme data, but within the virgifera species group, D. barberi and D. longicornis strongly resolve as sister taxa as well as monophyletic with the neotropical species, D. viridula, D. cristata and D. lemniscata also resolve as sister taxa. Both relationships are not in congruence with the prior allozyme-based hypothesis. Within the fucata species group, D. speciosa and D. balteata resolve as sister taxa. Results also strongly supported the D. virgifera and D. undecimpunctata subspecies complexes. Our proposed phylogeny provides some insight into current hypotheses regarding distribution status and evolution of various life history traits for Diabrotica. [source]


    Suitability of Molluscs as Bioindicators for Meadow- and Flood-Channels of the Elbe-Floodplains

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 4 2006
    Francis Foeckler
    Abstract The goals of the subproject "molluscs" within the inter-disciplinary research project "Indicator systems for the characterisation and prediction of ecological changes in floodplain systems" were: , develop further existing mollusc-based indicator systems of site quality and to test their transferability, , characterise grassland sites within the recent floodplains of three study areas along the Elbe River, , analyse the relationships between indicator species-/groups and abiotic parameters, , compile and use selected species traits in the analytical process. The results clearly show several characteristic species groups related to the hydrology of the sites (i.e. inundation and desiccation regime) and on to the degree of agricultural use. These dependencies can be interpreted by the simultaneous analysis of the species traits. "Models" are proposed, that are applicable to nature protection measures at the landscape scale. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    REVIEW: Mechanisms driving change: altered species interactions and ecosystem function through global warming

    JOURNAL OF ANIMAL ECOLOGY, Issue 5 2010
    Lochran W. Traill
    Summary 1.,We review the mechanisms behind ecosystem functions, the processes that facilitate energy transfer along food webs, and the major processes that allow the cycling of carbon, oxygen and nitrogen, and use case studies to show how these have already been, and will continue to be, altered by global warming. 2.,Increased temperatures will affect the interactions between heterotrophs and autotrophs (e.g. pollination and seed dispersal), and between heterotrophs (e.g. predators-prey, parasites/pathogens-hosts), with generally negative ramifications for important ecosystem services (functions that provide direct benefit to human society such as pollination) and potential for heightened species co-extinction rates. 3.,Mitigation of likely impacts of warming will require, in particular, the maintenance of species diversity as insurance for the provision of basic ecosystem services. Key to this will be long-term monitoring and focused research that seek to maintain ecosystem resilience in the face of global warming. 4.,We provide guidelines for pursuing research that quantifies the nexus between ecosystem function and global warming. These include documentation of key functional species groups within systems, and understanding the principal outcomes arising from direct and indirect effects of a rapidly warming environment. Localized and targeted research and monitoring, complemented with laboratory work, will determine outcomes for resilience and guide adaptive conservation responses and long-term planning. [source]


    Indicators for biodiversity in agricultural landscapes: a pan-European study

    JOURNAL OF APPLIED ECOLOGY, Issue 1 2008
    R. Billeter
    Summary 1In many European agricultural landscapes, species richness is declining considerably. Studies performed at a very large spatial scale are helpful in understanding the reasons for this decline and as a basis for guiding policy. In a unique, large-scale study of 25 agricultural landscapes in seven European countries, we investigated relationships between species richness in several taxa, and the links between biodiversity and landscape structure and management. 2We estimated the total species richness of vascular plants, birds and five arthropod groups in each 16-km2 landscape, and recorded various measures of both landscape structure and intensity of agricultural land use. We studied correlations between taxonomic groups and the effects of landscape and land-use parameters on the number of species in different taxonomic groups. Our statistical approach also accounted for regional variation in species richness unrelated to landscape or land-use factors. 3The results reveal strong geographical trends in species richness in all taxonomic groups. No single species group emerged as a good predictor of all other species groups. Species richness of all groups increased with the area of semi-natural habitats in the landscape. Species richness of birds and vascular plants was negatively associated with fertilizer use. 4Synthesis and applications. We conclude that indicator taxa are unlikely to provide an effective means of predicting biodiversity at a large spatial scale, especially where there is large biogeographical variation in species richness. However, a small list of landscape and land-use parameters can be used in agricultural landscapes to infer large-scale patterns of species richness. Our results suggest that to halt the loss of biodiversity in these landscapes, it is important to preserve and, if possible, increase the area of semi-natural habitat. [source]


    Single host trees in a closed forest canopy matrix: a highly fragmented landscape?

    JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2007
    J. Müller
    Abstract:, Whether trees represent habitat islands and therefore are influenced by similar biogeographic processes as ,real' islands is controversial. For trees in highly fragmented landscapes the impacts of spatial isolation on arthropod communities have already been demonstrated. However, we have almost no evidence that in large forests the arthropod communities on single trees in a closed canopy matrix are influenced by similar processes. In the present study the influence of spatial isolation on the specialized oak crown fauna was analysed in a large broadleaved forest area in northern Bavaria, Germany. The dependence of specialists on the proportion of oaks in the surrounding forest was investigated by using flight interception traps (67 on oak, 19 on beech). As target species, saproxylic and herbivorous Coleoptera and Heteroptera were sampled. The following two hypotheses were tested: (1) The proportion of oak specialists differs for oaks in beech forests and oaks in oak forests. (2) The proportion of oak specialists increases with the proportion of oaks in the surrounding forest. For all species groups, the proportion of oak specialists was higher in oak crowns than in beech crowns. Herbivorous beetles and true bugs showed a higher proportion of specialists in oak forests than on single oaks in beech forests. The proportion of herbivorous oak specialists increased significantly with increasing numbers of adjacent oak trees, while saproxylic Coleoptera showed no relationship to oak density. For herbivorous Coleoptera a threshold of higher proportion occurred where >30% oak was present, and for Heteroptera a first threshold was identified at values >70% and a second at >30%. This indicates that larger habitat patches within a closed forest canopy matrix support larger populations of herbivorous oak specialists. Hence, similar effects of spatial isolation might occur in a closed forest as have already been shown for highly fragmented open landscapes. [source]


    Biogeography of Iberian freshwater fishes revisited: the roles of historical versus contemporary constraints

    JOURNAL OF BIOGEOGRAPHY, Issue 11 2009
    Ana F. Filipe
    Abstract Aim, The question of how much of the shared geographical distribution of biota is due to environmental vs. historical constraints remains unanswered. The aim of this paper is to disentangle the contribution of historical vs. contemporary factors to the distribution of freshwater fish species. In addition, it illustrates how quantifying the contribution of each type of factor improves the classification of biogeographical provinces. Location, Iberian Peninsula, south-western Europe (c. 581,000 km2). Methods, We used the most comprehensive data on native fish distributions for the Iberian Peninsula, compiled from Portuguese and Spanish sources on a 20-km grid-cell resolution. Overall, 58 species were analysed after being categorized into three groups according to their ability to disperse through saltwater: (1) species strictly intolerant of saltwater (primary species); (2) species partially tolerant of saltwater, making limited incursions into saltwaters (secondary species); and (3) saltwater-tolerant species that migrate back and forth from sea to freshwaters or have invaded freshwaters recently (peripheral species). Distance-based multivariate analyses were used to test the role of historical (basin formation) vs. contemporary environmental (climate) conditions in explaining current patterns of native fish assemblage composition. Cluster analyses were performed to explore species co-occurrence patterns and redefine biogeographical provinces based on the distributions of fishes. Results, River basin boundaries were better at segregating species composition for all species groups than contemporary climate variables. This historical signal was especially evident for primary and secondary freshwater fishes. Eleven biogeographical provinces were delineated. Basins flowing to the Atlantic Ocean north of the Tagus Basin and those flowing to the Mediterranean Sea north of the Mijares Basin were the most dissimilar group. Primary and secondary freshwater species had higher province fidelity than peripheral species. Main conclusions, The results support the hypothesis that historical factors exert greater constraints on native freshwater fish assemblages in the Iberian Peninsula than do current environmental factors. After examining patterns of assemblage variation across space, as evidenced by the biogeographical provinces, we discuss the likely dispersal and speciation events that underlie these patterns. [source]


    Modelling the distribution of a threatened habitat: the California sage scrub

    JOURNAL OF BIOGEOGRAPHY, Issue 11 2009
    Erin C. Riordan
    Abstract Aim, Using predictive species distribution and ecological niche modelling our objectives are: (1) to identify important climatic drivers of distribution at regional scales of a locally complex and dynamic system , California sage scrub; (2) to map suitable sage scrub habitat in California; and (3) to distinguish between bioclimatic niches of floristic groups within sage scrub to assess the conservation significance of analysing such species groups. Location, Coastal mediterranean-type shrublands of southern and central California. Methods, Using point localities from georeferenced herbarium records, we modelled the potential distribution and bioclimatic envelopes of 14 characteristic sage scrub species and three floristic groups (south-coastal, coastal,interior disjunct and broadly distributed species) based upon current climate conditions. Maxent was used to map climatically suitable habitat, while principal components analysis followed by canonical discriminant analysis were used to distinguish between floristic groups and visualize species and group distributions in multivariate ecological space. Results, Geographical distribution patterns of individual species were mirrored in the habitat suitability maps of floristic groups, notably the disjunct distribution of the coastal,interior species. Overlap in the distributions of floristic groups was evident in both geographical and multivariate niche space; however, discriminant analysis confirmed the separability of floristic groups based on bioclimatic variables. Higher performance of floristic group models compared with sage scrub as a whole suggests that groups have differing climate requirements for habitat suitability at regional scales and that breaking sage scrub into floristic groups improves the discrimination between climatically suitable and unsuitable habitat. Main conclusions, The finding that presence-only data and climatic variables can produce useful information on habitat suitability of California sage scrub species and floristic groups at a regional scale has important implications for ongoing efforts of habitat restoration for sage scrub. In addition, modelling at a group level provides important information about the differences in climatic niches within California sage scrub. Finally, the high performance of our floristic group models highlights the potential a community-level modelling approach holds for investigating plant distribution patterns. [source]


    Historical biogeographical patterns of the species of Bursera (Burseraceae) and their taxonomic implications

    JOURNAL OF BIOGEOGRAPHY, Issue 11 2006
    David Espinosa
    Abstract Aim, The plant genus Bursera, with 104 species of trees and shrubs, has been used as a model for biogeographical analyses because of its high species richness and large number of endemic species. The biogeographical patterns of Bursera and their implications for its phylogenetic classification are reviewed in order that some hypotheses on the historical biogeography of tropical Mexico can be proposed. Location,Bursera is found in the south-western USA, most of Mexico, mainly below 1700 m elevation in tropical forests, with some species in xeric shrublands, diversifying along the Pacific slope, Central America, and north-western South America. A few species occur on the Galapagos and Revillagigedo archipelagos, some of which are endemics, whereas in the Antilles species are distributed extensively, with several endemics in the Bahamas, Cuba, Jamaica, and Hispaniola. Methods, Data from specimens in herbaria and the literature were used to construct a matrix of 104 species in 160 areas. Distributional patterns of the species of Bursera were inferred applying track analysis, parsimony analysis of endemicity (PAE), and Brooks parsimony analysis (BPA). Results, Track analysis revealed four individual tracks: (1) a circum-Caribbean track, comprising species of the Bursera simaruba species group; (2) an Antillean track, including species that have been transferred to Commiphora based on their pollen traits; (3) a Mexican Pacific track, including species of the B. fragilis, B. microphylla, and B. fagaroides species groups, called ,cuajiotes'; and (4) a Neotropical Pacific track, including the two species groups assigned to section Bullockia, in which the individual track of the Bursera copallifera species group is nested within the track of the B. glabrifolia species group. The four tracks overlap in a node in the Mexican Pacific slope, where they are highly diversified. PAE allowed us to identify 22 areas of endemism: 12 in Mexico (11 along the Mexican Pacific slope), six in the Antilles, two in Central America, one in South America, and one in the Galapagos. The general area cladogram obtained by BPA has two main clades: one includes the greater Antilles; and the other, 12 Mexican areas of endemism. Main conclusions,Bursera fragilis, B. microphylla, and B. fagaroides species groups can be treated together as a new section within Bursera, sect. Quaxiotea, because they are segregated from the other groups of sect. Bursera based on morphological, anatomical, molecular and geographical evidence. [source]


    Spatial analysis of taxonomic and genetic patterns and their potential for understanding evolutionary histories

    JOURNAL OF BIOGEOGRAPHY, Issue 11 2004
    Sophia A. Bickford
    Abstract Aim, The aim of this research is to develop and investigate methods for the spatial analysis of diversity based on genetic and taxonomic units of difference. We use monophyletic groups of species to assess the potential for these diversity indices to elucidate the geographical components of macro-scaled evolutionary processes. Location, The range occupied by Pultenaea species in temperate and sub-tropical eastern Australia, extending from western South Australia (133° E,32° S) to Tasmania (146° E,43° S) to coastal central Queensland (148° E,20° S). Methods, We applied a series of both spatially explicit and spatially implicit analyses to explore the nature of diversity patterns in the genus Pultenaea, Fabaceae. We first analysed the eastern species as a whole and then the phylogenetic groups within them. We delineated patterns of endemism and biotic (taxon) regions that have been traditionally circumscribed in biogeographical studies of taxa. Centres of endemism were calculated using corrected weighted endemism at a range of spatial scales. Biotic regions were defined by comparing the similarity of species assemblages of grid cells using the Jaccard index and clustering similar cells using hierarchical clustering. On the basis that genetically coherent areas were likely to be more evolutionary informative than species patterns, genetic indices of similarity and difference were derived. A matrix of similarity distances between taxa was generated based on the number of shared informative characters of two sections of trnL-F and ndhF chloroplast nuclear regions. To identify genetically similar areas, we clustered cells using the mean genetic similarities of the species contained within each pair of cells. Measures of the mean genetic similarity of species in areas were delineated using a geographically local multi-scalar approach. Resultant patterns of genetic diversity are interpreted in relation to theories of the evolutionary relationships between species and species groups. Results, Centres of Pultenaea endemism were defined, those of clades 1 congruent with the spatially separated centres of clades 2 and 3. The taxonomic classification analysis defined cells with shared groups of species, which in some cases clustered when plotted in geographic space, defining biotic regions. In some instances the distribution of biotic regions was congruent with centres of endemism, however larger scale groupings were also apparent. In clade 1 one set of species was replaced by another along the extent of the range, with some connectivity between some geographically disjunct regions due to the presence of widespread species. In the combined analysis of clade 2 and 3 species the major biotic (taxonomic) groups with geographic coherence were defined by species in the respective clades, representing the geographic separation of these clades. However distinctive biotic regions within these main groupings of clades 2 and 3 were also apparent. Clustering cells using the mean genetic similarities of the species contained within each pair of cells indicated that some of the taxonomically defined biotic boundaries were the result of changes in composition of closely related species. This was most apparent in clades 1 and 2 where most cells were highly genetically similar. In clade 3 genetically distinct groups remained and were in part defined by sister taxa with disjunct distributions. Gradients in mean genetic similarity became more apparent from small to larger scales of analysis. At larger scales of analysis, regions of different levels of genetic diversity were delineated. Regions with highest diversity levels (lowest level of similarity) often represented regions where the ranges of phylogenetically distinctive species intergraded. Main conclusions, The combined analysis of diversity, phylogeny and geography has potential to reveal macro-scaled evolutionary patterns from which evolutionary processes may be inferred. The spatial genetic diversity indices developed in this study contribute new methods for identifying coherent evolutionary units in the landscape, which overcome some of the limitations of using taxonomic data, and from which the role of geography in evolutionary processes can be tested. We also conclude that a multiple-index approach to diversity pattern analysis is useful, especially where patterns may be the result of a long history of different environmental changes and related evolutionary events. The analysis contributes to the knowledge of large-scale diversity patterns of Pultenaea which has relevance for the assessment of the conservation status of the genus. [source]


    Towards a more general species,area relationship: diversity on all islands, great and small

    JOURNAL OF BIOGEOGRAPHY, Issue 4 2001
    Lomolino
    Aim To demonstrate a new and more general model of the species,area relationship that builds on traditional models, but includes the provision that richness may vary independently of island area on relatively small islands (the small island effect). Location We analysed species,area patterns for a broad diversity of insular biotas from aquatic and terrestrial archipelagoes. Methods We used breakpoint or piecewise regression methods by adding an additional term (the breakpoint transformation) to traditional species,area models. The resultant, more general, species,area model has three readily interpretable, biologically relevant parameters: (1) the upper limit of the small island effect (SIE), (2) an estimate of richness for relatively small islands and (3) the slope of the species,area relationship (in semi-log or log,log space) for relatively large islands. Results The SIE, albeit of varying magnitude depending on the biotas in question, appeared to be a relatively common feature of the data sets we studied. The upper limit of the SIE tended to be highest for species groups with relatively high resource requirements and low dispersal abilities, and for biotas of more isolated archipelagoes. Main conclusions The breakpoint species,area model can be used to test for the significance, and to explore patterns of variation in small island effects, and to estimate slopes of the species,area (semi-log or log,log) relationship after adjusting for SIE. Moreover, the breakpoint species,area model can be expanded to investigate three fundamentally different realms of the species,area relationship: (1) small islands where species richness varies independent of area, but with idiosyncratic differences among islands and with catastrophic events such as hurricanes, (2) islands beyond the upper limit of SIE where richness varies in a more deterministic and predictable manner with island area and associated, ecological factors and (3) islands large enough to provide the internal geographical isolation (large rivers, mountains and other barriers within islands) necessary for in situ speciation. [source]


    How to go extinct: lessons from the lost plants of Krakatau

    JOURNAL OF BIOGEOGRAPHY, Issue 5 2000
    Robert J. Whittaker
    Abstract Aim Few data sets exist that allow measurement of long-term extinction and turnover rates for islands of the size of the three main islands of the Krakatau group. We test the reliability of previous estimates of plant species extinction and examine structure within the extinction data. Location The data analysed are for the three older Krakatau islands: Rakata, Sertung and Panjang in the Sunda Strait, Indonesia. Methods Our analysis is based on a comprehensive database incorporating all species records for each island since recolonization began after the 1883 sterilization, plus attributes such as distribution, phylogeny, population status and dispersal mechanism for each species. We employ a combination of univariate and multi-term analyses in analysing structure, and derive Minimal Adequate Models using binary logistic analyses of variance and covariance. We compare the 1883,1934 data set with the contemporary flora as represented by (1) 1979,83 records (as used in previous analyses) and (2) 1979,94 data (original). Results The improved data for the contemporary flora reduces the number of missing species by one-third. We show that a variety of estimates of extinction rate can be produced depending on what assumptions are made concerning the status of particular species groups. Structural features in the extinction data persist despite the reduction in overall numbers of losses. Losses relate to: (1) the number of islands on which a species originally occurred, (2) the primary dispersal mode, and (3) the original abundance of a species (e.g. whether it was known to have established a successful resident population, and whether it was in decline or increasing in c. 1930). The ,best' descriptive model employs the variables denoted under (3). A high proportion of losses comprised species introduced by people and rare or ephemeral species. Losses of ,residents' that had colonized naturally could largely be accounted for by reference to (1) successional loss of habitat and, to a lesser degree, (2) other habitat disturbance or loss. Main conclusions Previous analyses, based on a more limited data set, have significantly over-estimated extinction from the Krakatau flora. Few naturally colonizing and established species have become extinct. The findings indicate that caution is necessary in interpreting ,headline' island ecological rates, and in analysing and modelling such data. Examination of structural features of the data appear to be valuable both in providing ecological insights in their own right, and in enabling refinements to estimates of extinction and thus turnover. [source]


    Interactions of multiple disturbances in shaping boreal forest dynamics: a spatially explicit analysis using multi-temporal lidar data and high-resolution imagery

    JOURNAL OF ECOLOGY, Issue 3 2010
    Udayalakshmi Vepakomma
    Summary 1.,Mixed-wood boreal forests are often considered to undergo directional succession from shade-intolerant to shade-tolerant species. It is thus expected that overstorey gaps should lead to the recruitment of shade-tolerant conifers into the canopy in all stand development stages and that the recruitment of shade-intolerant hardwoods would be minimal except in the largest gaps. 2.,We analysed short-term gap dynamics over a large 6-km2 spatial area of mixed-wood boreal forest across a gradient of stands in different developmental stages with different times of origin since fire (expressed as stand ,age') that were affected differentially by the last spruce budworm (SBW) outbreak. Structural measurements of the canopy from lidar data were combined with spectral classification of broad species groups to characterize the gap disturbance regime and to evaluate the effect of gap openings on forest dynamics. 3.,Estimated annual gap opening rates increased from 0.16% for 84-year-old stands to 0.88% for 248-year-old stands. Trees on gap peripheries in all stands were more vulnerable to mortality than interior canopy trees. 4.,Due to recovery from the last SBW outbreak 16 years previously, gap closure rates were higher than opening rates, ranging from 0.44% to 2.05% annually, but did not show any relationship with stand age. There was, however, a continuing legacy of the last SBW outbreak in old-conifer stands in terms of a continued high mortality of conifers. In all stands, the majority of the openings were filled from below, although a smaller but significant proportion filled from lateral growth of gap edge trees. 5.,Synthesis. The forest response to moderate- to small-scale disturbances in old-growth boreal forest counters the earlier assumption that the transition from one forest state to the next is slow and directional with time since the last fire. Overall, a small 6% increase in hardwoods was observed over 5 years, largely due to regeneration in-filling of hardwoods in gaps instead of successional transition to more shade-tolerant conifers. Gaps are vital for hardwood maintenance while transition to softwoods can occur without perceived gap-formation as overstorey trees die, releasing understorey trees. [source]


    Fine-scale environmental variation and structure of understorey plant communities in two old-growth pine forests

    JOURNAL OF ECOLOGY, Issue 2 2003
    Lee E. Frelich
    Summary 1Although it is well established that nitrogen and light play major roles in structuring plant communities across the landscape, it is not as clear how they structure communities within forest stands. Virtually nothing is known about within-stand structure of understorey communities of herbs and small shrubs in near-boreal forests. 2We tested the hypothesis that fine-scale (5,20 m) variability in N and light structure forest-floor plant communities in two old-growth mixed Pinus resinosa and Pinus strobus forests in north-eastern Minnesota, USA. 3In each forest, all trees > 1.4 m tall were mapped on a 0.75,1.0 ha area. A grid of subplots 5,10 m apart was established (total n = 147), and N mineralization (µg g,1 soil day,1), soil depth (cm), light (% canopy openness), and percentage cover of all herbs and small shrubs were measured on each subplot. 4Cluster analysis showed that the dominant understorey species fall into three groups. Group 1 is unrelated to N and light, and is negatively associated with a midstorey of the small tree Acer rubrum and the most abundant tall shrub Corylus cornuta. Group 2 reaches maximum abundance in places (mostly gaps) with relatively high light, but is unrelated to within-stand variation in N availability. Group 3 consists of a single species, Aster macrophyllus, and reaches maximum abundance in areas with low N availability and low abundance of Corylus, but higher than average abundance of P. strobus and Betula papyrifera overstorey trees. 5N and light have a moderate influence on understorey plant community structure. The plant species do arrange themselves along N and light gradients, but the gradients are likely to be too narrow to allow the degree of differentiation seen at the landscape level. Spatial patterning of the species groups is probably influenced by other factors, including disturbance history, chance and neighbourhood effects such as clonal reproduction. [source]


    Phylogenetic relationships of the newly described species Chondrostoma olisiponensis (Teleostei: Cyprinidae)

    JOURNAL OF FISH BIOLOGY, Issue 4 2010
    H. F. Gante
    Phylogenies were generated using mitochondrial cytochrome b and nuclear ß-actin gene DNA sequences to infer the phylogenetic relationships of the newly described Chondrostoma olisiponensis. Results indicate that the species is monophyletic with species of the lemmingii -group in mtDNA phylogenies, while it is monophyletic with species of the arcasii -group in the nuclear ß-actin trees. This is in agreement with the morphological resemblance of C. olisiponensis to both species groups. Results from nuclear but not mitochondrial DNA indicate that one population could be currently hybridizing with sympatric Chondrostoma lusitanicum. Based on a relaxed clock calibration of cytochrome b, it is estimated that C. olisiponensis split 12·5,7·9 million years ago (middle,upper Miocene) from its most recent ancestor, which coincides with a period of endorrheism in the Iberian Peninsula. [source]


    Computer-aided calibration for visual estimation of vegetation cover

    JOURNAL OF VEGETATION SCIENCE, Issue 6 2009
    Åsa Gallegos Torell
    Abstract Question: What precision and accuracy of visual cover estimations can be achieved after repeated calibration with images of vegetation in which the true cover is known, and what factors influence the results? Methods: Digital images were created, in which the true cover of vegetation was digitally calculated. Fifteen observers made repeated estimates with immediate feedback on the true cover. The effects on precision and accuracy through time were evaluated with repeated proficiency tests. In a field trial, cover estimates, before and after calibration, were compared with point frequency data. Results: Even a short time of calibration greatly improves precision and accuracy of the estimates, and can also reduce the influence of different backgrounds, aggregation patterns and experience. Experienced observers had a stronger tendency to underestimate the cover of narrow-leaved grasses before calibration. The field trial showed positive effects of computer-based calibration on precision, in that it led to considerably less between-observer variation for one of the two species groups. Conclusions: Computer-aided calibration of vegetation cover estimation is simple, self-explanatory and time-efficient, and might possibly reduce biases and drifts in estimate levels over time. Such calibration can also reduce between-observer variation in field estimates, at least for some species. However, the effects of calibration on estimations in the field must be further evaluated, especially for multilayered vegetation. [source]


    Temporal dynamics of marginal steppic vegetation over a 26-year period of substantial environmental change

    JOURNAL OF VEGETATION SCIENCE, Issue 2 2009
    Silvia Matesanz
    Abstract Questions: (1) Is climate a strong driver of vegetation dynamics, including interannual variation, in a range margin steppic community? (2) Are there long-term trends in cover and species richness in this community, and are these consistent across species groups and species within groups? (3) Can long-term trends in plant community data be related to variation in local climate over the last three decades? Location: A range margin steppic grassland community in central Germany. Methods: Cover, number and size of all individuals of all plant species present in three permanent 1-m2 plots were recorded in spring for 26 years (1980,2005). Climatic data for the study area were used to determine the best climatic predictor for each plant community, functional group and species variable (annual data and interannual variation) using best subsets regression. Results: April and autumn temperature showed the highest correlation with total cover and species richness and with interannual variations of cover and richness. However, key climate drivers differed between the five most abundant species. Similarly, total cover and number and cover of perennials significantly decreased over time, while no trend was found for the cover and number of annuals. However, within functional groups there were also contrasting species-specific responses. Long-term temperature increases and high interannual variability in both temperature and precipitation were strongly related to long-term trends and interannual variations in plant community data. Conclusions: Temporal trends in vegetation were strongly associated with temporal trends in climate at the study site, with key roles for autumn and spring temperature and precipitation. Dynamics of functional groups and species within groups and their relationships to changes in temperature and precipitation reveal complex long-term and interannual patterns that cannot be inferred from short-term studies with only one or a few individual species. Our results also highlight that responses detected at the functional group level may mask contrasting responses within functional groups. We discuss the implications of these findings for attempts to predict the future response of biodiversity to climate change. [source]


    Mixed species groups in mammals

    MAMMAL REVIEW, Issue 3-4 2003
    EVA STENSLAND
    ABSTRACT 1.,Mixed species groups have long been noted in birds, but they also occur among different species of mammals ranging from closely related species to species from different orders. Mixed species groups of mammals occur in many different habitats, e.g. ungulates on the savannah, primates in various types of forests and cetaceans in the oceans. Mixed species groups are very different in their duration, frequency, predominant activity and structure depending on the species interacting and the habitat they occur in. 2.,Functional explanations for mixed species groups usually fall within two categories: foraging advantages and predator avoidance. However, there could also be other social and reproductive advantages of mixed species groups that could contribute to their formation and stability. The advantages do not have to be equally distributed between the participating species and can also vary according to season and the presence of predators. 3.,It is important that all investigators of mixed species groups take their studies one step further after the naturalistic description and test the function and benefits of mixed species groups in order to give more strength to their conclusions. In this paper we review and discuss the function of mixed species groups in mammals and suggest an approach on how to investigate the function of such groups. [source]


    Hydroid assemblages from the Southwestern Atlantic Ocean (34,42° S)

    MARINE ECOLOGY, Issue 1 2009
    Gabriel N. Genzano
    Abstract This paper provides updated taxonomic knowledge about hydrozoan species and provides ecological information including geographical and bathymetric distributions and biological substrata for the various hydroid assemblages from the Sub-Antarctic Biogeographical Region, mainly Buenos Aires and the Uruguayan coasts. Five of the 41 species found are new records for the study region. Thirty-one species (75.6%), all found at depths of less than 80 m, have cosmopolitan distributions. Biodiversity decreased markedly below 80 m depth, where nine species (,22%) distributed in the Southern hemisphere and one endemic species (2.4%) were found. Most species were non-specific epizoites, occurring on diverse substrata. A non-parametric multivariate similarity analysis revealed nine species groups that were correlated with large-scale and local oceanographic patterns and with the availability of suitable substrata. The main hydroid substrata for eight of the groups were cnidarians, molluscs (mainly blue mussels), quartzite rocks and sponges. In a single group found in Patagonian scallop beds, the main biological substrata were polychaete tubes, other hydroids and scallops. [source]