Sperm Flagella (sperm + flagella)

Distribution by Scientific Domains


Selected Abstracts


Myzostomida Are Not Annelids: Molecular and Morphological Support for a Clade of Animals with Anterior Sperm Flagella

CLADISTICS, Issue 2 2001
Jan Zrzavý
The myzostomes are animals with five pairs of parapodia, living as commensals or (endo)parasites mostly on crinoid and ophiuroid echinoderms. They are generally considered aberrant annelids, possibly phyllodocidan polychaetes. A phylogenetic analysis of 18S and 28S ribosomal DNA sequence data of Myzostoma glabrum, together with 60 morphological, developmental, ultrastructural, and life-history characters, is presented to show that myzostomes are a sister group of the Cycliophora, closely related to the rotifer-acanthocephalan clade (=Syndermata). Myzostomes and syndermates share predominantly the highly derived spermatozoa with anteriorly directed flagella (cycliophoran sperm is insufficiently known). The myzostome-cycliophoran-syndermate clade, accommodated within the Platyzoa (including Platyhelminthes s. str., Gastrotricha, Gnathostomulida, Syndermata, Cycliophora, and Myzostomida), is strongly supported by most analyses, regardless of alignment parameters, character combinations and weighting, species sampling, and tree-building methods. The new name Prosomastigozoa ("forward-flagellar animals") is proposed for the group including three phyla (Cycliophora, Myzostomida, and Syndermata). [source]


Identification of Cytokeratins in Bovine Sperm Outer Dense Fibre Fractions

REPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2003
E Hinsch
Contents Outer dense fibres (ODF) are important substructures of mammalian sperm tails that are involved in the regulation of sperm motility. In this study, we investigated the identity of several sodium dodecyl sulphate (SDS)-insoluble ODF proteins. Bovine ODF were purified by separating sperm heads and tails using ultrasound and Percoll® density gradient centrifugation. Sperm flagella were treated with the detergent cetyltrimethylammonium bromide (CTAB). CTAB-insoluble material, which reportedly represents the ODF fraction, was collected, and electron microscopy confirmed a highly purified ODF fraction. We found after solubilization of this fraction with SDS that high amounts of insoluble material were retained after centrifugation. SDS-insoluble material was collected and quantitatively dissolved in 8 M urea. SDS-gel electrophoresis in the presence of urea revealed polypeptides with apparent molecular masses of approximately 25, 43, and 50 kDa. Subsequent immunoblotting with anti-cytokeratin antibodies detected two urea-soluble, SDS-insoluble proteins with apparent molecular masses of 45 and 66 kDa. The 45-kDa protein was identified as cytokeratin 19. An antibody reacting with a palette of cytokeratins (CK 1,18 and CK 20), KL1, was the only antibody that reacted with the 66-kDa polypeptide. We conclude that sperm ODF fractions contain at least one each of type I and type II intermediate filaments. As keratins and intermediate filaments are described as rope-like structures, we suggest that these intermediate filaments play an important structural or tension-bearing role in sperm flagella. [source]


Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera)

CYTOSKELETON, Issue 5 2009
Maria Giovanna Riparbelli
Abstract In addition to their role in centrosome organization, the centrioles have another distinct function as basal bodies for the formation of cilia and flagella. Centriole duplication has been reported to require two alternate assembly pathways: template or de novo. Since spermiogenesis in the termite Mastotermes darwiniensis lead to the formation of multiflagellate sperm, this process represents a useful model system in which to follow basal body formation and flagella assembly. We present evidence of a possible de novo pathway for basal body formation in the differentiating germ cell. This cell also contains typical centrosomal proteins, such as centrosomin, pericentrin-like protein, ,-tubulin, that undergo redistribution as spermatid differentiation proceeds. The spermatid centrioles are long structures formed by nine doublet rather than triplet microtubules provided with short projections extending towards the surrounding cytoplasm and with links between doublets. The sperm basal bodies are aligned in parallel beneath the nucleus. They consist of long regions close to the nucleus showing nine doublets in a cartwheel array devoid of any projections; on the contrary, the short region close to the plasma membrane, where the sperm flagella emerge, is characterized by projections similar to those observed in the centrioles linking the basal body to the plasma membrane. It is hypothesized that this appearance is in connection with the centriole elongation and further with the flagellar axonemal organization. Microtubule doublets of sperm flagellar axonemes are provided with outer dynein arms, while inner arms are rarely visible. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber

CYTOSKELETON, Issue 4 2009
Masaya Morita
Abstract The sea cucumber Holothuria atra is a broadcast spawner. Among broadcast spawners, fertilization occurs by means of an egg-derived substance(s) that induces sperm flagellar motility activation and chemotaxis. Holothuria atra sperm were quiescent in seawater, but exhibited flagellar motility activation near eggs with chorion (intact eggs). In addition, they moved in a helical motion toward intact eggs as well as a capillary filled with the water layer of the egg extracts, suggesting that an egg-derived compound(s) causes motility activation and chemotaxis. Furthermore, demembranated sperm flagella were reactivated in high pH (>7.8) solution without cAMP, and a phosphorylation assay using (,-32P)ATP showed that axonemal protein phosphorylation and dephosphorylation also occurred in a pH-dependent manner. These results suggest that the activation of sperm motility in holothurians is controlled by pH-sensitive changes in axonemal protein phosphorylation. Ca2+ concentration affected the swimming trajectory of demembranated sperm, indicating that Ca2+ -binding proteins present at the flagella may be associated with regulation of flagellar waveform. Moreover, the phosphorylation states of several axonemal proteins were Ca2+ -sensitive, indicating that Ca2+ impacts both kinase and phosphatase activities. In addition, in vivo sperm protein phosphorylation occurred after treatment with a water-soluble egg extract. Our results suggest that one or more egg-derived compounds activate motility and subsequent chemotactic behavior via Ca2+ -sensitive flagellar protein phosphorylation. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Molecular characterization of Ciona sperm outer arm dynein reveals multiple components related to outer arm docking complex protein 2

CYTOSKELETON, Issue 10 2006
Akiko Hozumi
Abstract Using proteomic and immunochemical techniques, we have identified the light and intermediate chains (IC) of outer arm dynein from sperm axonemes of the ascidian Cionaintestinalis. Ciona outer arm dynein contains six light chains (LC) including a leucine-rich repeat protein, Tctex1- and Tctex2-related proteins, a protein similar to Drosophila roadblock and two components related to Chlamydomonas LC8. No LC with thioredoxin domains is included in Ciona outer arm dynein. Among the five ICs in Ciona, three are orthologs of those in sea urchin dynein: two are WD-repeat proteins and the third one, unique to metazoan sperm flagella, contains both thioredoxin and nucleoside diphosphate kinase modules. The remaining two Ciona ICs have extensive coiled coil structure and show sequence similarity to outer arm dynein docking complex protein 2 (DC2) that was first identified in Chlamydomonas flagella. We recently identified a third DC2-like protein with coiled coil structure, Ci-Axp66.0 that is also associated in substoichiometric amounts with Ciona outer arm dynein. In addition, Oda5p, a component of an additional complex required for assembly of outer arm dynein in Chlamydomonas flagella, also groups with this family of DC2-like proteins. Thus, the assembly of outer arm dynein onto doublet microtubules involves multiple coiled-coil proteins related to DC2. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


Na+/Ca2+ exchanger modulates the flagellar wave pattern for the regulation of motility activation and chemotaxis in the ascidian spermatozoa

CYTOSKELETON, Issue 10 2006
Kogiku Shiba
Abstract Ion channels and ion exchangers are known to be important participants in various aspects of sperm physiology, e.g. motility activation, chemotaxis, the maintenance of motility and the acrosome reaction in the sperm. We report here on a role of the K+ -independent Na+/Ca2+ exchanger (NCX) on ascidian sperm. Reverse-transcriptase PCR reveals that the NCX is expressed in the testis while immunoblotting and immunolocalization demonstrate that the NCX exists on the sperm in the ascidian Ciona savignyi and C. intestinalis. A potent blocker of the NCX, KB-R7943 was found to block sperm-activating and -attracting factor (SAAF)-induced motility activation, sperm motility and sperm chemotaxis. We further analyzed the effects of this blocker on motility parameters such as the flagellar waveform, curvature, beat frequency, amplitude and wavelength of the sperm flagella. Inhibition of the NCX caused two distinct effects: a low concentration of KB-R7943 induced symmetric bending, whereas a high concentration of KB-R7943 resulted in asymmetric flagellar bending. These findings suggest that the NCX plays important roles in the regulation of SAAF-induced sperm chemotaxis, motility activation and motility maintenance in the ascidian. This study provides new information toward an understanding of Ca2+ transport systems in sperm motility and chemotaxis. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


Measurement of the force and torque produced in the calcium response of reactivated rat sperm flagella

CYTOSKELETON, Issue 1 2001
Mark J. Moritz
Abstract Rat sperm that are demembranated with Triton X-100 and reactivated with Mg-ATP show a strong mechanical response to the presence of free calcium ion. At pCa < 4, the midpiece region of the flagellum develops a strong and sustained curvature that gives the cell the overall appearance of a fishhook [Lindemann and Goltz, 1988: Cell Motil. Cytoskeleton 10:420,431]. In the present study, the force and torque that maintain the calcium-induced hook have been examined quantitatively. In addition, full-length and shortened flagella were manipulated to evaluate the plasticity of the hooks and determined the critical length necessary for maintaining the curvature. The hooks were found to be highly resilient, returning to their original configuration (>95%) after being straightened and released. The results from manipulating the shortened flagella suggest that the force holding the hook in the curved configuration is generated in the basal 60 ,m of the flagellum. The force required to straighten the calcium-induced hooks was measured with force-calibrated glass microprobes, and the bending torque was calculated from the measured force. The force and torque required to straighten the flagellum were found to be proportional to the change in curvature of the hooked region of the flagellum, suggesting an elastic-like behavior. The average torque to open the hooks to a straight position was 2.6 (±1.4) × 10 -7 dyne × cm (2.6 × 10 -14 N × m) and the apparent stiffness was 4.3 (±1.3) × 10 -10 dyne × cm2 (4.3 × 10 -19 N × m2). The stiffness of the hook was determined to be approximately one quarter the rigor stiffness of a rat sperm flagellum measured under comparable conditions. Cell Motil. Cytoskeleton 49:33,40, 2001. © 2001 Wiley-Liss, Inc. [source]


Digital image analysis of the flagellar beat of activated and hyperactivated suncus spermatozoa

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2007
Takane Kaneko
Abstract The flagellar beat of hyperactivated Suncus spermatozoa was analyzed by digital imaging and was compared to that of the nonhyperactivated (activated) spermatozoa in order to examine the function of the accessory fibers during the flagellar beat and the sliding filament mechanism inducing the motility of the hyperactivated spermatozoa. Unusual large and long characteristics of the accessory fibers were involved in generating the gently curved bends and a low beat frequency. Examination of the motility parameters of the flagellar beat of the activated and hyperactivated spermatozoa attached to a slide glass by their heads revealed that there were two beating modes: a frequency-curvature dependent mode in the activated flagellar beat and a nearly constant frequency mode in the hyperactivated flagellar beat. The hyperactivated flagellar beat was characterized by sharp bends in the proximal midpiece and a low beat frequency. The sharp bends in the proximal midpiece were induced by the increase in the total length of the microtubule sliding at the flagellar base. The rate of microtubule sliding (sliding velocity) in the axoneme remained almost constant in the flagellar beat of both the activated and hyperactivated spermatozoa. Comparison of the sliding velocity in Suncus, golden hamster, monkey, and sea urchin sperm flagella with their stiffness suggests that the sliding velocity is determined by the stiffness at the flagellar base and that the same sliding microtubule system functions in both mammalian and echinoderm spermatozoa. Mol. Reprod. Dev. 74: 478,485, 2007. © 2006 Wiley-Liss, Inc. [source]


Identification of Cytokeratins in Bovine Sperm Outer Dense Fibre Fractions

REPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2003
E Hinsch
Contents Outer dense fibres (ODF) are important substructures of mammalian sperm tails that are involved in the regulation of sperm motility. In this study, we investigated the identity of several sodium dodecyl sulphate (SDS)-insoluble ODF proteins. Bovine ODF were purified by separating sperm heads and tails using ultrasound and Percoll® density gradient centrifugation. Sperm flagella were treated with the detergent cetyltrimethylammonium bromide (CTAB). CTAB-insoluble material, which reportedly represents the ODF fraction, was collected, and electron microscopy confirmed a highly purified ODF fraction. We found after solubilization of this fraction with SDS that high amounts of insoluble material were retained after centrifugation. SDS-insoluble material was collected and quantitatively dissolved in 8 M urea. SDS-gel electrophoresis in the presence of urea revealed polypeptides with apparent molecular masses of approximately 25, 43, and 50 kDa. Subsequent immunoblotting with anti-cytokeratin antibodies detected two urea-soluble, SDS-insoluble proteins with apparent molecular masses of 45 and 66 kDa. The 45-kDa protein was identified as cytokeratin 19. An antibody reacting with a palette of cytokeratins (CK 1,18 and CK 20), KL1, was the only antibody that reacted with the 66-kDa polypeptide. We conclude that sperm ODF fractions contain at least one each of type I and type II intermediate filaments. As keratins and intermediate filaments are described as rope-like structures, we suggest that these intermediate filaments play an important structural or tension-bearing role in sperm flagella. [source]