Spatial Hierarchy (spatial + hierarchy)

Distribution by Scientific Domains


Selected Abstracts


Effects of Impervious Cover at Multiple Spatial Scales on Coastal Watershed Streams,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007
Roy Schiff
Abstract:, The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 , |r| , 0.92, p < 0.0125) to total impervious area (TIA) in the 100-m buffer of local contributing areas (,5-km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest-urban land use gradients. [source]


Hierarchical Vortex Regions in Swirling Flow

COMPUTER GRAPHICS FORUM, Issue 3 2009
Christoph Petz
Abstract We propose a new criterion to characterize hierarchical two-dimensional vortex regions induced by swirling motion. Central to the definition are closed loops that intersect the flow field at a constant angle. The union of loops belonging to the same area of swirling motion defines a vortex region. These regions are disjunct but may be nested, thus introducing a spatial hierarchy of vortex regions. We present a parameter free algorithm for the identification of these regions. Since they are not restricted to star- or convex-shaped geometries, we are able to identify also intricate regions, e.g., of elongated vortices. Computing an integrated value for each loop and mapping these values to a vortex region, introduces new ways for visualizing or filtering the vortex regions. Exemplary, an application based on the Rankine vortex model is presented. We apply our method to several CFD datasets and compare our results to existing approaches. [source]


Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia

DIVERSITY AND DISTRIBUTIONS, Issue 6 2003
Thomas Wernberg
Abstract.,Ecklonia radiata (C. Agardh) J. Agardh kelp beds , a characteristic feature of the nearshore environment along the south-west Australian coastline , contribute significantly to the coastal biodiversity in temperate Australia, yet, little is known about the organization of these macroalgal assemblages. By compiling existing and new data sets from habitat surveys, we have characterized and compared the structure of kelp-associated macroalgal assemblages in three regions (Marmion Lagoon, Hamelin Bay and the marine environment neighbouring the Fitzgerald River National Park) across more than 1000 kilometres of the south-west Australian coastline. 152 macroalgal taxa had been recognized within the three regions and this is in the range of species richness reported from other Australian and African kelp beds. The kelp-associated algal assemblages were regionally distinct, 66% of all taxa were only found in one region and only 17 taxa were found in all three regions. Adjacent regions shared an additional 13,15 taxa. The regional shifts in assemblage structure were evident in species composition of both canopy and understorey. The organization of assemblages followed a spatial hierarchy where differences in assemblage structure were larger among regions (hundreds of kilometres apart) than among sites within regions (kilometres apart) and differences among sites within region were larger than differences among quadrats within sites (metres apart). Despite this hierarchy each level of nesting contributed approximately the same to total variation in assemblage structure and these spatial patterns were stronger than temporal differences from seasons to 2,3 years. Our results suggest that local and small-scale processes contribute considerably to heterogeneity in macroalgal assemblages throughout south-western Australia, and, in particular, our results are consistent with E. radiata exerting a strong influence on macroalgal assemblage structure. Further, our study contradicts the existence of a general south-west Australian kelp assemblage, although a few species may form the core of E. radiata associations across regions. [source]


The greening and browning of Alaska based on 1982,2003 satellite data

GLOBAL ECOLOGY, Issue 4 2008
David Verbyla
Abstract Aim To examine the trends of 1982,2003 satellite-derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska. Location Arctic and subarctic Alaska. Methods Annual maximum NDVI data from the twice monthly Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 1982,2003 data set with 64-km2 pixels were extracted from a spatial hierarchy including three large regions: ecoregion polygons within regions, ecozone polygons within boreal ecoregions and 100-km climate station buffers. The 1982,2003 trends of mean annual maximum NDVI values within each area, and within individual pixels, were computed using simple linear regression. The relationship between NDVI and temperature and precipitation was investigated within climate station buffers. Results, At the largest spatial scale of polar, boreal and maritime regions, the strongest trend was a negative trend in NDVI within the boreal region. At a finer scale of ecoregion polygons, there was a strong positive NDVI trend in cold arctic tundra areas, and a strong negative trend in interior boreal forest areas. Within boreal ecozone polygons, the weakest negative trends were from areas with a maritime climate or colder mountainous ecozones, while the strongest negative trends were from warmer basin ecozones. The trends from climate station buffers were similar to ecoregion trends, with no significant trends from Bering tundra buffers, significant increasing trends among arctic tundra buffers and significant decreasing trends among interior boreal forest buffers. The interannual variability of NDVI among the arctic tundra buffers was related to the previous summer warmth index. The spatial pattern of increasing tundra NDVI at the pixel level was related to the west-to-east spatial pattern in changing climate across arctic Alaska. There was no significant relationship between interannual NDVI and precipitation or temperature among the boreal forest buffers. The decreasing NDVI trend in interior boreal forests may be due to several factors including increased insect/disease infestations, reduced photosynthesis and a change in root/leaf carbon allocation in response to warmer and drier growing season climate. Main conclusions There was a contrast in trends of 1982,2003 annual maximum NDVI, with cold arctic tundra significantly increasing in NDVI and relatively warm and dry interior boreal forest areas consistently decreasing in NDVI. The annual maximum NDVI from arctic tundra areas was strongly related to a summer warmth index, while there were no significant relationships in boreal areas between annual maximum NDVI and precipitation or temperature. Annual maximum NDVI was not related to spring NDVI in either arctic tundra or boreal buffers. [source]


Progress, spread and natural transmission of Bahia bark scaling of citrus in Brazil

ANNALS OF APPLIED BIOLOGY, Issue 3 2006
F.F. Laranjeira
Abstract Progress, spread and natural transmission of Bahia bark scaling of citrus were evaluated in a trial where 240 screenhouse-nursed nucellar grapefruit plants ,,Clason', ,Little River Seedless', ,Red Blush', ,Reed' and ,Howell Seedless' cvs , were planted alongside and 5 m apart from a 10-year-old symptomatic ,Marsh Seedless' grapefruit orchard. Plants were distributed in 16 rows of 15 trees, with three plants of each cultivar per row. Eight trial plants were kept in screen cages. Incidence of symptomatic plants was assessed at 3-months intervals, for 5 years, and for further 2 years at irregular intervals. Cumulative maps of disease incidence were produced for each assessment date and used in all analyses. Temporal progress was analysed by nonlinear fitting of three disease progress models. Spread was characterised in three levels of spatial hierarchy by the following analyses: ordinary runs, binomial dispersion index, binary power law fitting, isopath mapping and nonlinear fitting of disease gradient models. The first symptomatic plant was detected 2 years after planting. In the last disease assessment, 5 years after the first, 98% of the unprotected plants were symptomatic. None of the screen-caged trees showed any symptoms. Bahia bark scaling progress was polyetic and best described by the logistic model. Ordinary runs analysis showed little if any evidence of transmission between adjacent trees. Diseased plants showed a very aggregated pattern inside quadrats (D > 5 and b > 1.53). Isopath mapping showed that main spread was only because of the primary inoculum source. Secondary foci were also observed, but they were never dissociated from main initial disease focus. Disease gradient followed wind direction, starting near the original inoculum source and was best described by exponential model. These results support a hypothesis of Bahia bark scaling transmission by air-borne vectors with limited dispersion ability. [source]