Home About us Contact | |||
Spherical Grains (spherical + grain)
Selected AbstractsImplications of ideas on super-hydrophobicity for water repellent soilHYDROLOGICAL PROCESSES, Issue 17 2007G. McHale Abstract Water repellence is an important factor in soil erosion due to its role in inhibiting the re-establishment of vegetation after fire and due to its enhancement of run-off. Water repellence is studied across a range of diverse disciplines, such as chemistry, materials, textiles and soil and reclamation science. In recent years many basic studies of water repellence of materials have focused on the role of the sub-mm surface topography of a material in modifying the intrinsic hydrophobicity imparted by the surface chemistry to create super-hydrophobicity. In this report, we first illustrate the types of hydrophobic effects created by a suitable coupling of small scale surface topography with surface chemistry using three materials: an etched metal, a foam and a micro-fabricated pillar structure. These experiments demonstrate the general applicability of the ideas and suggest that they could apply to a granular material such as, a fine sandy soil, particularly when the grains have become coated with a hydrophobic layer. This applicability is confirmed by contact angle measurements of droplets of water on hydrophobic sand. A theoretical model describing the application of these ideas in a loose-packed, but regular, array of uniform spherical grains is then presented and discussed. When the grains are in a dry state initially, the effect of the surface is to increase the apparent water repellence as observed through the contact angle. However, when the spaces between the grains are filled with water, the effect is to provide greater wetting. To qualitatively confirm the enhancement of contact angle caused by the granular structure, model surfaces using 600 and 250 µm hydrophobic glass beads were created. On these surfaces, the contact angle of droplets of water was increased from 108° to 126° and 140° , respectively. Copyright © 2007 John Wiley & Sons, Ltd. [source] Frictional granular mechanics: A variational approachINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2010R. Holtzman Abstract The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations. Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer-generated, three-dimensional, irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described by a sequence of static equilibrium configurations of the pack. A variational approach is employed to find the equilibrium configurations by minimizing the total work against the intergranular loads. Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack. Good agreement between the computed and measured moduli, achieved with no adjustment of material parameters, establishes the physical soundness of the proposed model. Copyright © 2009 John Wiley & Sons, Ltd. [source] Fluctuation of Vegetative Storage Proteins in the Seedlings of Swietenia macrophylla, Analogous to the Seasonal Changes of Those in the Shoot of the Adult TreeJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 3 2007Ya-Qin Han Abstract In order to identify appropriate plant materials for studying the gene expression and biological function of vegetative storage proteins (VSPs) in woody plants, the VSPs in the seedlings of Swietenia macrophylla King were investigated by using light microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western-blotting. The seed of S. macrophylla was rich in storage proteins that accumulated in the vacuoles of cotyledon parenchyma cells in appearance of compact spherical grains. The growth and development of S. macrophylla seedlings were characterized by an obvious growth rhythm. The storage proteins in seeds disappeared during seedling growth while VSPs appeared in the stem 2 weeks after seedling leaves matured. Thereafter, the VSPs in the seedling stem almost exhausted during new shoot growth, and when the leaves of new shoot just matured, both the stem beneath the new shoot of seedlings and the stem of new shoot started to accumulate VSPs. Nitrogen application dramatically increased the level of VSPs, but had little influence on the dynamics of VSP consumption and accumulation in seedling stem. Together with these data, the fluctuation of VSPs in seedlings was very similar to that in the branches of the adult trees. In addition, seedlings are easy to be treated due to their small size. Our results suggested that S. macrophylla seedlings were suitable for investigating the biological roles of VSPs and the mechanism of nitrogen storage in trees. [source] Effect of Interface Structure on the Microstructural Evolution of CeramicsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2006Wook Jo The interface atomic structure was proposed to have a critical effect on microstructure evolution during sintering of ceramic materials. In liquid-phase sintering, spherical grains show normal grain growth behavior without exception, while angular grains often grow abnormally. The coarsening process of spherical grains with a disordered or rough interface atomic structure is diffusion-controlled, because there is little energy barrier for atomic attachments. On the other hand, kink-generating sources such as screw dislocations or two-dimensional (2-D) nuclei are required for angular grains having an ordered or singular interface structure. Coarsening of angular grains based on a 2-D nucleation mechanism could explain the abnormal grain growth behavior. It was also proposed that a densification process is closely related to the interface atomic structure. Enhanced densification by carefully chosen additives during solid state sintering was explained in terms of the grain-boundary structural transition from an ordered to a disordered open structure. [source] A comparative study of laser- and electric-field-induced effects on the crystallinity, surface morphology and plasmon resonance of indium and gold thin filmsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 4 2010Prashant Kumar Abstract The effects of post-deposition treatment of In and Au thin films by excimer laser and electric field are reported. The films were subjected to an electric field in the range of 0.1,3.3,kV/cm and laser irradiation in the range from 0.01 to 0.1,J/cm2. The effect of this treatment on the morphology and crystallinity of indium and gold thin films (10,100,nm thickness) is investigated. Indium films exhibited a three-fold grain growth at an electric field of 3.3,kV/cm. Gold thin film, on the other hand, showed significant grain growth at a much lower field of 0.6,kV/cm. The as-deposited thin films of indium and gold were amorphous but turned nanocrystalline with average crystallite sizes of 57,nm at 3.33,kV/cm and 35,nm at 0.66,kV/cm, respectively. When indium thin films were laser irradiated, flat disc-shaped grains for as-deposited thin films were transformed to spherical grains at a laser fluence of 0.02,J/cm2 and cubical grains at 0.05,J/cm2. At 0.05,J/cm2, as-deposited amorphous indium and gold thin films turned nanocrystalline with crystallite sizes of 50,nm and 10,nm, respectively. Significantly, laser treatment causes the grain-size distribution to become narrower with a shift in mean size to larger values. Electric-field treatment on the other hand leads to a shifting of the mean grain size to larger values without affecting the distribution. [source] |