Spherical Beads (spherical + bead)

Distribution by Scientific Domains


Selected Abstracts


Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6 2006
Anne Galarneau
Abstract Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area (,1000 m2/g): narrow mesopore size distributions and controlled pore connectivity. These characteristics are highly relevant to chromatographic applications for resistance to mass transfer, which has never been studied in chromatography because of the absence of model materials such as MTS. Their synthesis is based on unique self-assembly processes between surfactants and silica. In order to take advantage of the perfectly adjustable texture of MTS in chromatographic applications, their particle morphology has to be tailored at the micrometer scale. We developed a synthesis strategy to control the particle morphology of MTS using the concept of pseudomorphic transformation. Pseudomorphism was recognized in the mineral world to gain a mineral that presents a morphology not related to its crystallographic symmetry group. Pseudomorphic transformations have been applied to amorphous spherical silica particles usually used in chromatography as stationary phases to produce MTS with the same morphology, using alkaline solution to dissolve progressively and locally silica and reprecipitate it around surfactant micelles into ordered MTS structures. Spherical beads of MTS with hexagonal and cubic symmetries have been synthesized and successfully used in HPLC in fast separation processes. MTS with a highly connected structure (cubic symmetry), uniform pores with a diameter larger than 6 nm in the form of particles of 5 ,m could compete with monolithic silica columns. Monolithic columns are receiving strong interest and represent a milestone in the area of fast separation. Their synthesis is a sol-gel process based on phase separation between silica and water, which is assisted by the presence of polymers. The control of the synthesis of monolithic silica has been systematically explored. Because of unresolved yet cladding problems to evaluate the resulting macromonoliths in HPLC, micromonoliths were synthesized into fused-silica capillaries and evaluated by nano-LC and CEC. Only CEC allows to gain high column efficiencies in fast separation processes. Capillary silica monolithic columns represent attractive alternatives for miniaturization processes (lab-on-a chip) using CEC. [source]


A Continuous Flow Synthesis of Micrometer-Sized Actuators from Liquid Crystalline Elastomers

ADVANCED MATERIALS, Issue 47 2009
Christian Ohm
We demonstrate the use of a microfluidic setup to prepare monodisperse and spherical beads from a liquid crystalline elastomer. These particles show a strong and reversible shape change into a cigar-like conformation during the transition into the isotropic phase. These properies are a result of the monodomainic alignment of the mesogens in the flow field of the microfluidic setup. [source]


Controlled release tamsulosin hydrochloride from alginate beads with waxy materials

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 12 2005
Min-Soo Kim
The objective of this study was to develop oral controlled release delivery systems for tamsulosin hydrochloride (TSH) using alginate beads with various waxy materials, such as Compritol 888 ATO, Precirol ATO 5 and Gelucires. The beads were prepared from sodium alginate,waxy material,TSH slurry dropped onto calcium chloride to form spherical beads. The effects of the addition of various waxy materials to alginate beads on the drug encapsulation efficiency, bead size and morphology were investigated. The drug encapsulation efficiency significantly increased with the addition of waxy materials. The TSH-loaded alginate beads with and without waxy materials were almost spherical particles with an average diameter of 1.44 and 1.22mm, respectively. In dissolution study, the TSH-loaded alginate beads with waxy materials exhibited controlled release behaviour over a 6-h period, while beads without waxy materials showed release of 100% TSH within 2h. These results may be attributed to the formation of a more rigid alginate matrix structure due to incorporated waxy materials. From the Dunnett's t -test and the f2 factor, the release of TSH from alginate beads, a similar dissolution pattern to that of the marketed product (Harunal capsules) could be achieved by adding Gelucire 50/13 into TSH-loaded alginate beads. From these results, oral controlled release of TSH could be achieved with loading in alginate beads with waxy materials, such as Compritol 888 ATO, Precirol ATO 5 and Gelucires. [source]


A Predictive Coarse-Grained Model for Semiflexible Polymers in Specific Solvents

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 4 2010
Sheng C. Shie
Abstract A predictive CG model based on a conventional freely rotating chain was developed to describe semiflexible polymers on a relatively large length/time scale. Parameterization of the model requires only two material properties such as, the Kuhn length and coil density. The diameter of spherical "beads" employed in the model is used as an effective parameter that needs to be determined from preliminary data. Once determined for a particular solvent system, this parameter can then be used to model general solvent systems on a parameter-free basis. Comparison with SANS data on dilute conjugated polymer solutions reveals that the CG polymer model can well describe material properties ranging from local rodlike segments to bulk interchain aggregates. [source]


Preparation and characterization of crosslinked resins containing ferrite particles

POLYMER ENGINEERING & SCIENCE, Issue 10 2008
Luiz Claudio de Santa Maria
Micrometer-sized magnetic particles hosted on network material were successfully prepared by a simple chemical process (ion exchange followed by co-precipitation) from commercial styrene-divinylbenzene copolymers. Energy dispersive X-ray spectroscopy (EDS) coupled to scanning electron microscopy (SEM) allowed the observation of submicron particles. All the produced spherical beads have presented metallic particles (NiFe2O4, CuFe2O4, CoFe2O4, or MnFe2O4), either as isolated particles or agglomerates, located on their external and internal (within pores) The thermal stability of the composites, evaluated by thermogravimetric techniques, were found to be dependent on the amount of ferrite particles incorporated into them. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers. [source]