Home About us Contact | |||
Bacterial Products (bacterial + products)
Selected AbstractsAn Antimicrobial Peptide Modulates Epithelial Responses to Bacterial ProductsTHE LARYNGOSCOPE, Issue 5 2008Marcel J. Vonk BSc Abstract Introduction: Changes in the respiratory epithelium and chronic and recurrent infections are thought to play a central role in the pathogenesis of otitis media and sinusitis. The airway epithelium is the primary defense system of the respiratory tract. Bacterial cell membrane components like lipopolysaccharide (LPS) and lipoteichoic acid (LTA) can affect the mucociliary clearance function of the respiratory epithelium. P60.4-Ac is a synthetic antimicrobial peptide based on the structure of the cathelicidin LL-37 that neutralizes the pro-inflammatory activity of LPS and LTA. Materials and Methods: Normal respiratory sinus epithelium was cultured at the air liquid interface. The cells were incubated with LPS or LTA in the presence or absence of P60.4-Ac. Results: P60.4-Ac neutralized the LPS- and LTA- induced effect on air-liquid interface cultured epithelial cells. P60.4-Ac significantly inhibited the increase in the epithelial layer caused by LPS or LTA. Conclusion: These data demonstrate that P60.4-Ac might be of clinical benefit in the management of otitis media with effusion and sinusitis. [source] Models of white matter injury: Comparison of infectious, hypoxic-ischemic, and excitotoxic insultsDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2002Henrik Hagberg Abstract White matter damage (WMD) in preterm neonates is strongly associated with adverse outcome. The etiology of white matter injury is not known but clinical data suggest that ischemia-reperfusion and/or infection-inflammation are important factors. Furthermore, antenatal infection seems to be an important risk factor for brain injury in term infants. In order to explore the pathophysiological mechanisms of WMD and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, numerous novel animal models have been developed over the past decade. WMD can be induced by antenatal or postnatal administration of microbes (E. coli or Gardnerella vaginalis), virus (border disease virus) or bacterial products (lipopolysaccharide, LPS). Alternatively, various hypoperfusion paradigms or administration of excitatory amino acid receptor agonists (excitotoxicity models) can be used. Irrespective of which insult is utilized, the maturational age of the CNS and choice of species seem critical. Generally, lesions with similarity to human WMD, with respect to distribution and morphological characteristics, are easier to induce in gyrencephalic species (rabbits, dogs, cats and sheep) than in rodents. Recently, however, models have been developed in rats (PND 1,7), using either bilateral carotid occlusion or combined hypoxia-ischemia, that produce predominantly white matter lesions. LPS is the infectious agent most often used to produce WMD in immature dogs, cats, or fetal sheep. The mechanism whereby LPS induces brain injury is not completely understood but involves activation of toll-like receptor 4 on immune cells with initiation of a generalized inflammatory response resulting in systemic hypoglycemia, perturbation of coagulation, cerebral hypoperfusion, and activation of inflammatory cells in the CNS. LPS and umbilical cord occlusion both produce WMD with quite similar distribution in 65% gestational sheep. The morphological appearance is different, however, with a more pronounced infiltration of inflammatory cells into the brain and focal microglia/macrophage ("inflammatory WMD") in response to LPS compared to hypoperfusion evoking a more diffuse microglial response usually devoid of cellular infiltrates ("ischemic WMD"). Furthermore, low doses of LPS that by themselves have no adverse effects in 7-day-old rats (maturation corresponding to the near term human fetus), dramatically increase brain injury to a subsequent hypoxic-ischemic challenge, implicating that bacterial products can sensitize the immature CNS. Contrary to this finding, other bacterial agents like lipoteichoic acid were recently shown to induce tolerance of the immature brain suggesting that the innate immune system may respond differently to various ligands, which needs to be further explored. MRDD Research Reviews 2002;8:30,38. © 2002 Wiley-Liss, Inc. [source] Minimizing the release of proinflammatory and toxic bacterial products within the host: A promising approach to improve outcome in life-threatening infectionsFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2005Roland Nau Abstract Various bacterial components (e.g., endotoxin, teichoic and lipoteichoic acids, peptidoglycans, DNA) induce or enhance inflammation by stimulating the innate immune system and/or are directly toxic in eukariotic cells (e.g., hemolysins). When antibiotics which inhibit bacterial protein synthesis kill bacteria, smaller quantities of proinflammatory or toxic compounds are released in vitro and in vivo than during killing of bacteria by ,-lactams and other cell-wall active drugs. In general, high antibiotic concentrations liberate lower quantities of bacterial proinflammatory or toxic compounds than concentrations close to the minimum inhibitory concentration. In animal models of Escherichia coli Pseudomonas aeruginosa and Staphylococcus aureus peritonitis/sepsis and of Streptococcus pneumoniae meningitis, a lower release of proinflammatory bacterial compounds was associated with a reduced mortality or neuronal injury. Pre-treatment with a bacterial protein synthesis inhibitor reduced the strong release of bacterial products usually observed during treatment with a ,-lactam antibiotic. Data available strongly encourage clinical trials comparing antibiotic regimens with different release of proinflammatory/toxic bacterial products. The benefit of the approach to reduce the liberation of bacterial products should be greatest in patients with a high bacterial load. [source] Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall componentsIMMUNOLOGY, Issue 2 2004Jaya Talreja Summary Histamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-,B translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components. [source] Toll-like receptors and their role in gastrointestinal diseaseJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 6 2009Adam G Testro Abstract The innate immune response to invading pathogens is centred upon a family of non-clonal, germline-encoded pattern recognition receptors (PRRs), the Toll-like receptors (TLRs). These provide specificity for a vast range of microbial pathogens, and offer an immediate anti-microbial response system. Thirteen mammalian TLRs have been described; 10 are expressed in humans, each responsible for the recognition of distinct, invariant microbial structures originating from bacteria, viruses, fungi and protozoa. The two most thoroughly studied are TLR4 and TLR2, the PRRs for Gram-negative and Gram-positive bacterial products, respectively. TLR4 is also the major receptor recognising endogenous ligands released from damaged or dying cells. Activation of a TLR by its relevant ligand rapidly ignites a complex intracellular signaling cascade that ultimately results in upregulation of inflammatory genes and production of proinflammatory cytokines, interferons and recruitment of myeloid cells. It also stimulates expression, upon antigen presenting cells, of co-stimulatory molecules required to induce an adaptive immune response. Whilst a robust TLR response is critical for survival and defence against invading pathogens, inappropriate signaling in response to alterations in the local microflora environment can be detrimental. Such ,unhelpful TLR responses' could form the basis for a large number of gastrointestinal and liver disorders, including inflammatory bowel disease, viral hepatitis, autoimmune liver diseases and hepatic fibrosis. As our understanding of TLRs expands, the pathogenesis of a number of gastrointestinal disorders will be further elucidated, and this offers potential for specific therapies aimed directly at TLR signaling. [source] Localized antimicrobial peptide expression in human gingivaJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2001Beverly A. Dale The stratified epithelia of the oral cavity are continually exposed to bacterial challenge that is initially resisted by innate epithelial factors and by the recruitment of neutrophils. Antimicrobial peptides from phagocytes and epithelia contribute to this antimicrobial barrier. Using antibodies and in situ hybridization, we explored antimicrobial peptide expression in the varied epithelia of the periodontium and in cultured gingival epithelial cells. In gingival tissue, mRNA for the ,-defensins, human beta-defensin 1 (hBD-1) and human beta-defensin 2 (hBD-2) was predominately localized in suprabasal stratified epithelium and the peptides were detected in upper epithelial layers consistent with the formation of the stratified epithelial barrier. In cultured epithelial cells, both hBD-1 and -2 peptides were detected only in differentiating, involucrin-positive epithelial cells, although hBD-2 required stimulation by proinflammatory mediators or bacterial products for expression. ,-defensins were not detected in junctional epithelium (JE) that serves as the attachment to the tooth surface. In contrast, ,-defensins and cathelicidin family member LL-37 were detected in polymorphonuclear neutrophils (PMNs) that migrate through the JE, a localization that persists during inflammation, when the JE and surrounding tissue are highly infiltrated with PMNs. Thus, the undifferentiated JE contains exogenously expressed ,-defensins and LL-37, and the stratified epithelium contains endogenously expressed ,-defensins. These findings show that defensins and other antimicrobial peptides are localized in specific sites in the gingiva, are synthesized in different cell types, and are likely to serve different roles in various regions of the periodontium. [source] Intestinal Dysbiosis: A Possible Mechanism of Alcohol-Induced Endotoxemia and Alcoholic Steatohepatitis in RatsALCOHOLISM, Issue 10 2009Ece Mutlu Background:, Clinical and animal data indicate that gut-derived endotoxin and other luminal bacterial products are necessary cofactors for development of alcoholic liver disease (ALD). Although gut leakiness is clearly an important cause of endotoxemia in ALD, it cannot fully explain endotoxemia in all ALD subjects and thus other factors may be involved. One possible factor is a change in gut microbiota composition (dysbiosis). Thus, the aim of our study was to interrogate the gut bacterial microbiota in alcohol-fed rats to see if chronic alcohol consumption affects gut bacteria composition. Method:, Male Sprague,Dawley rats were given either alcohol or dextrose intragastrically by gavage twice daily for up to 10 weeks. A subgroup of rats was also given either a probiotic (lactobacillus GG) or a prebiotic (oats) by gavage. Ileal and colonic mucosal-attached microbiota composition were interrogated by Length Heterogeneity PCR (LH-PCR) fingerprinting. Results:, Bacterial microbiota composition in alcohol-fed rats is not different from dextrose-fed rats at weeks 4 and 6. Mucosa-associated microbiota composition in the colon is altered at 10 weeks of daily alcohol gavage. Both LGG and oats prevented alcohol-induced dysbiosis up to 10 weeks of alcohol treatment. Conclusion:, Daily alcohol consumption for 10 weeks alters colonic mucosa-associated bacterial microbiota composition in rats. Our data showed, for the first time, that daily alcohol consumption can affect colonic microbiome composition and suggest that dysbiosis may be an important mechanism of alcohol-induced endotoxemia. Further studies are needed to determine how dysbiotic microbiota contributes to development of ALD and whether therapeutic interventions targeted towards dysbiotic microbiota can prevent complications of alcoholism like ALD. [source] The RprY response regulator of Porphyromonas gingivalisMOLECULAR MICROBIOLOGY, Issue 4 2007Ana E. Duran-Pinedo Summary Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with chronic adult periodontitis. Its ecological niche is the gingival crevice, where the organism adapts to the challenges of the infectious process such as host defence and bacterial products. Bacterial responses to environmental changes are partly regulated by two-component signal transduction systems. Several intact systems were annotated in the genome of P. gingivalis, as well as an orphan regulator encoding a homologue of RprY, a response regulator from Bacteroides fragilis. With the goal of defining the environmental cues that activate RprY in P. gingivalis, we used several strategies to identify its regulon. Results from gene expression and DNA,protein binding assays identified target genes that were either involved in transport functions or associated with oxidative stress, and indicated that RprY can act as an activator and a repressor. RprY positively activated the primary sodium pump, NADH : ubiquinone oxidoreductase (NQR), and RprY protein also interacted with the promoter regions of nqrA genes from B. fragilis and Vibrio cholerae. Given that gingival bleeding and infiltration of host defence cells are symptoms of periodontal infection, iron products released from blood and reactive oxygen species from polymorphonuclear leucocytes may be potential inducers of the RprY regulon. [source] IL1,- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn's diseaseNEUROGASTROENTEROLOGY & MOTILITY, Issue 4 2009M. Kidd Abstract, Gut mucosal enterochromaffin (EC) cells are regarded as key regulators of intestinal motility and fluid secretion via secretion of serotonin (5HT), are increased in numbers in mucosal inflammation and located in close proximity to immune cells. We examined whether interleukin (IL)1, and Escherichia coli lipopolysaccharide (LPS) induced EC cell 5HT release through Toll-like/IL-1 (TIL) receptor activation, nuclear factor kappa B (NF,B) and mitogen-activated protein kinase (MAPK) phosphorylation and evaluated whether somatostatin could inhibit this phenomenon. Pure (>98%) human intestinal EC cells were isolated by fluorescent activated cell sorting from preparations of normal (n = 5) and Crohn's colitis (n = 6) mucosa. 5HT release was measured (ELISA), and NF,B and ERK phosphorylation quantitated (ELISA) in response to IL1, and LPS. 5HT secretion was increased by both E. coli LPS (EC50 = 5 ng mL,1) and IL1, (EC50 = 0.05 pmol L,1) >2-fold (P < 0.05) in Crohn's EC cells compared with normal EC cells. Secretion was reversible by the TLR4 antagonist, E. coli K12 LPS (IC50 = 12 ng mL,1) and the IL1, receptor antagonist (ILRA; IC50 = 3.4 ng mL,1). IL1, caused significant (P < 0.05) NF,B and MAPK phosphorylation (40,55%). The somatostatin analogue, lanreotide inhibited IL1,-stimulated secretion in Crohn's (IC50 = 0.61 nmol L,1) and normal EC cells (IC50 = 1.8 nmol L,1). Interleukins (IL1,) and bacterial products (E. coli LPS) stimulated 5HT secretion from Crohn's EC cells via TIL receptor activation (TLR4 and IL1,). Immune-mediated alterations in EC cell secretion of 5HT may represent a component of the pathogenesis of abnormal bowel function in Crohn's disease. Inhibition of EC cell-mediated 5HT secretion may be an alternative therapeutic strategy in the amelioration of inflammatory bowel disease symptomatology. [source] Toward a better analysis of secreted proteins: the example of the myeloid cells secretomePROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2007Mireille Chevallet Abstract The analysis of secreted proteins represents a challenge for current proteomics techniques. Proteins are usually secreted at low concentrations in the culture media, which makes their recovery difficult. In addition, culture media are rich in salts and other compounds interfering with most proteomics techniques, which makes selective precipitation of proteins almost mandatory for a correct subsequent proteomics analysis. Last but not least, the non-secreted proteins liberated in the culture medium upon lysis of a few dead cells heavily contaminate the so-called secreted proteins preparations. Several techniques have been used in the past for concentration of proteins secreted in culture media. These techniques present several drawbacks, such as coprecipitation of salts or poor yields at low protein concentrations. Improved techniques based on carrier-assisted TCA precipitation are described and discussed in this report. These techniques have been used to analyze the secretome of myeloid cells (macrophages, dendritic cells) and enabled to analyze proteins secreted at concentrations close to 1,ng/mL, thereby allowing the detection of some of the cytokines (TNF, IL-12) secreted by the myeloid cells upon activation by bacterial products. [source] Trefoil factor 3 is induced during degenerative and inflammatory joint disease, activates matrix metalloproteinases, and enhances apoptosis of articular cartilage chondrocytesARTHRITIS & RHEUMATISM, Issue 3 2010Sophie Rösler Objective Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a member of a family of protease-resistant peptides containing a highly conserved motif with 6 cysteine residues. Recent studies have shown that TFF3 is expressed in injured cornea, where it plays a role in corneal wound healing, but not in healthy cornea. Since cartilage and cornea have similar matrix properties, we undertook the present study to investigate whether TFF3 could induce anabolic functions in diseased articular cartilage. Methods We used reverse transcriptase,polymerase chain reaction, Western blot analysis, and immunohistochemistry to measure the expression of TFF3 in healthy articular cartilage, osteoarthritis (OA),affected articular cartilage, and septic arthritis,affected articular cartilage and to assess the effects of cytokines, bacterial products, and bacterial supernatants on TFF3 production. The effects of TFF3 on matrix metalloproteinase (MMP) production were measured by enzyme-linked immunosorbent assay, and effects on chondrocyte apoptosis were studied by caspase assay and annexin V assay. Results Trefoil factors were not expressed in healthy human articular cartilage, but expression of TFF3 was highly up-regulated in the cartilage of patients with OA. These findings were confirmed in animal models of OA and septic arthritis, as well as in tumor necrosis factor ,, and interleukin-1,,treated primary human articular chondrocytes, revealing induction of Tff3/TFF3 under inflammatory conditions. Application of the recombinant TFF3 protein to cultured chondrocytes resulted in increased production of cartilage-degrading MMPs and increased chondrocyte apoptosis. Conclusion In this study using articular cartilage as a model, we demonstrated that TFF3 supports catabolic functions in diseased articular cartilage. These findings widen our knowledge of the functional spectrum of TFF peptides and demonstrate that TFF3 is a multifunctional trefoil factor with the ability to link inflammation with tissue remodeling processes in articular cartilage. Moreover, our data suggest that TFF3 is a factor in the pathogenesis of OA and septic arthritis. [source] BAFF synthesis by rheumatoid synoviocytes is positively controlled by ,5,1 integrin stimulation and is negatively regulated by tumor necrosis factor , and toll-like receptor ligandsARTHRITIS & RHEUMATISM, Issue 10 2007Ghada Alsaleh Objective It was recently demonstrated that synoviocytes (FLS) from rheumatoid arthritis (RA) patients express BAFF transcripts that are up-regulated by tumor necrosis factor , (TNF,) and interferon-, (IFN,). Thus, BAFF increases in RA target cells might be related to activation of the receptors of innate immunity. The purpose of this study was to determine whether ligands of Toll-like receptor 2 (TLR-2), TLR-4, TLR-9, and ,5,1 integrin are able to induce BAFF synthesis by RA FLS. Methods Quantitative reverse transcription,polymerase chain reaction analyses and enzyme-linked immunosorbent assays were performed to evaluate BAFF messenger RNA induction and BAFF release from FLS after stimulation by ligands for TLR-2, TLR-4, TLR-9, ,5,1 integrin (bacterial lipopeptide [BLP] palmitoyl-3-cysteine-serine-lysine-4, lipopolysaccharide [LPS], CpG, and protein I/II, respectively), TNF,, and IFN,. Results In contrast to IFN,, neither TNF,, LPS, BLP, nor CpG induced the de novo synthesis and release of BAFF by FLS. Priming of cells with IFN, did not have a synergistic effect on BAFF synthesis by FLS stimulated with bacterial products known as pathogen-associated molecular patterns. Moreover, we found that IFN,-induced BAFF synthesis is inhibited by simultaneous stimulation with either TLR ligands or TNF,. We also showed that interplay between TLRs, TNF receptors, and IFN, signaling induces the expression of suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 and reduces IFN,-dependent STAT-1 phosphorylation, which might explain this inhibition. In contrast, we demonstrated that stimulation of ,5,1 integrin can induce BAFF synthesis and release per se and that stimulation of this pathway has no inhibitory effect on IFN,-induced BAFF synthesis. Conclusion Our findings indicate that BAFF secretion by resident cells in target organs of autoimmunity is tightly regulated by innate immunity, with positive and negative controls, depending on the receptors and the pathways triggered. [source] Protein secretion systems in MycobacteriaCELLULAR MICROBIOLOGY, Issue 6 2007Patricia A. DiGiuseppe Champion Summary Mycobacteria have a unique cell-envelope structure which protects the bacteria from the extracellular environment by limiting access to noxious molecules from the outside. This extremely hydrophobic and thick barrier also poses a unique problem for the export of bacterial products. Here we review the multiple protein secretion pathways in Mycobacteria, including the general secretion pathway and the Twin-Arginine Transporter, with an emphasis on the ESX-1 alternate secretion system. This newly identified protein secretion system is required for growth during infection and has provided insight into how M. tuberculosis manipulates the host immune response during infection. [source] Down-regulation of CXCR1 and CXCR2 expression on human neutrophils upon activation of whole blood by S. aureus is mediated by TNF-,CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2001I. Tikhonov It was suggested that bacterial products can inhibit the expression of leucocyte chemokine receptors during sepsis and affect leucocyte functions in septic syndrome. Superantigens and toxins produced by Staphylococcus aureus are capable of activating leucocytes via binding to MHC-II antigens on monocytes and T-cell receptor molecules on T lymphocytes. It was recently shown that staphylococcal enterotoxins directly down-regulate the expression of CC chemokine receptors on monocytes through binding to MHC class II molecules. We studied the effects of killed S. aureus on the expression of interleukin-8 receptors, CXCR1 and CXCR2, on polymorphonuclear leucocytes (PMN), which are known to lack the expression of MHC-II antigens. It was shown that S. aureus down-regulated the cell-surface expression of CXCR1 and CXCR2 on PMN in the whole blood and total blood leucocyte fraction containing PMN and monocytes, but did not modulate IL-8 receptor expression in purified PMN suspension. Antibody to TNF-, abrogated down-regulation of IL-8 receptors induced by S. aureus. In contrast, LPS reduced CXCR1 and CXCR2 expression in purified PMN and whole blood in a TNF-,-independent manner. We further showed that TNF-,-induced decrease of CXCR1 and CXCR2 expression was associated with lower IL-8 binding and lower CXCR1 and CXCR2 mRNA levels, and was abrogated by protease inhibitors. We suggest that during septicemia, S. aureus may inhibit neutrophil responsiveness to IL-8 and other CXC chemokines via TNF-,- mediated down-regulation of CXCR1 and CXCR2. [source] |