Home About us Contact | |||
Bacterial Phyla (bacterial + phylum)
Selected AbstractsThe effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samplesENVIRONMENTAL MICROBIOLOGY, Issue 1 2005Odile Basso Summary Our knowledge of the microbial characteristics of deep subsurface waters is currently very limited, mainly because of the methods used to collect representative microbial samples from such environments. In order to improve this procedure, a protocol designed to remove the unspecific, contaminant biofilm present on the walls of an approximately 800 m deep well is proposed. This procedure included extensive purges of the well, a mechanical cleaning of its wall, and three successive chlorine injections to disinfect the whole line before sampling. Total bacterial counts in water samples decreased from 2.5 × 105 to 1.0 × 104 per millilitre during the cleaning procedure. Culture experiments showed that the first samples were dominated by sulfate-reducers and heterotrophs, whereas the final sample was dominated by oligotrophic and hydrogenotrophic bacteria. Community structures established on the diversity of the 16S rRNA genes and data analysis revealed that the water sample collected, after a purge without removal of the biofilm, was characterized by numerous phyla which are not representative of the deep subsurface water. On the other hand, several bacterial phyla were only detected after the full cleaning of the well, and were considered as important components of the subsurface ecosystem which would have been missed in the absence of well cleaning. [source] In situ studies of the phylogeny and physiology of filamentous bacteria with attached growthENVIRONMENTAL MICROBIOLOGY, Issue 7 2002Trine Rolighed Thomsen Summary Among the filamentous bacteria occasionally causing bulking problems in activated sludge treatment plants, three morphotypes with attached microbial growth are common, Eikelboom Type 0041, Type 1851 and Type 1701. A better knowledge of the phylogeny and physiology of these filamentous bacteria is necessary in order to develop control strategies for bulking. In this study we have used a combination of fluorescence in situ hybridization (FISH) and microautoradiography (MAR) to investigate the identity and in situ physiology of the Type 0041-morphotype and its attached bacteria in two wastewater treatment plants. Identification and enumeration of Type 0041 using group-specific 16S rRNA-targeted FISH probes revealed that approximately 15% of the filaments hybridized with a gene probe specific for the TM7 group, a recently recognized major lineage in the bacterial domain. All other filaments morphologically identified as Type 0041 only hybridized to the general bacterial EUB338-probe, indicating that they probably do not belong to commonly isolated bacterial phyla such as the Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes, for which group-specific probes were used. The phylogenetic heterogeneity of Type 0041 again highlights the inadequacy of a morphology-based classification system. Like the filaments, most of the attached microbial cells were not identified beyond their affiliation to the Bacteria using the group-specific FISH probes. However, several different bacterial phyla were represented in the identified fraction suggesting that the attached microorganisms are phylogenetically diverse. The study of the in situ physiology of Type 0041 using MAR-FISH revealed that both the filaments and the attached bacteria on Type 0041 were versatile in the use of organic substrates and electron acceptors. It was observed that all Type 0041 could consume glucose, but none of the filaments were able to consume acetate under any conditions tested, in contrast to some of the attached bacteria. No significant physiological differences were found between TM7,positive and TM7,negative Type 0041 filaments, and only minor differences were observed between the two treatment plants tested. These are the first data on the physiology of the almost entirely uncharacterized TM7 phylum and show that TM7 filamentous bacteria can uptake carbon substrates under aerobic and anaerobic conditions. [source] Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and fecesFEMS MICROBIOLOGY ECOLOGY, Issue 1 2010Steven Smriga Abstract Feces and distal gut contents were collected from three coral reef fish species. Bacteria cell abundances, as determined via epifluorescence microscopy, ranged two orders of magnitude among the fishes. Mass-specific and apparent cell-specific hydrolytic enzyme activities in feces from Chlorurus sordidus were very high, suggesting that endogenous fish enzymes were egested into feces. Denaturing gradient gel electrophoresis profiles of 16S rRNA genes were more similar among multiple individuals of the surgeonfish Acanthurus nigricans than among individuals of the parrotfish C. sordidus or the snapper Lutjanus bohar. Analyses of feces-derived 16S rRNA gene clones revealed that at least five bacterial phyla were present in A. nigricans and that Vibrionaceae comprised 10% of the clones. Meanwhile, C. sordidus contained at least five phyla and L. bohar three, but Vibrionaceae comprised 71% and 76% of the clones, respectively. Many sequences clustered phylogenetically to cultured Vibrio spp. and Photobacterium spp. including Vibrio ponticus and Photobacterium damselae. Other Vibrionaceae -like sequences comprised a distinct phylogenetic group that may represent the presence of ,feces-specific' bacteria. The observed differences among fishes may reflect native gut microbiota and/or bacterial assemblages associated with ingested prey. [source] Molecular bacterial community analysis of clean rooms where spacecraft are assembledFEMS MICROBIOLOGY ECOLOGY, Issue 3 2007Christine Moissl Abstract Molecular bacterial community composition was characterized from three geographically distinct spacecraft-associated clean rooms to determine whether such populations are influenced by the surrounding environment or the maintenance of the clean rooms. Samples were collected from facilities at the Jet Propulsion Laboratory (JPL), Kennedy Space Flight Center (KSC), and Johnson Space Center (JSC). Nine clone libraries representing different surfaces within the spacecraft facilities and three libraries from the surrounding air were created. Despite the highly desiccated, nutrient-bare conditions within these clean rooms, a broad diversity of bacteria was detected, covering all the main bacterial phyla. Furthermore, the bacterial communities were significantly different from each other, revealing only a small subset of microorganisms common to all locations (e.g. Sphingomonas, Staphylococcus). Samples from JSC assembly room surfaces showed the greatest diversity of bacteria, particularly within the Alpha - and Gammaproteobacteria and Actinobacteria. The bacterial community structure of KSC assembly surfaces revealed a high presence of proteobacterial groups, whereas the surface samples collected from the JPL assembly facility showed a predominance of Firmicutes. Our study presents the first extended molecular survey and comparison of NASA spacecraft assembly facilities, and provides new insights into the bacterial diversity of clean room environments . [source] Agronomic and environmental implications of enhanced s -triazine degradationPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2010L Jason Krutz Abstract Novel catabolic pathways enabling rapid detoxification of s -triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s -triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s -triazine herbicides for weed control, and, with the exception of acidic soil conditions and s -triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s -triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s -triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s -triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted. Published in 2010 by John Wiley & Sons, Ltd. [source] |