Bacterial Internalization (bacterial + internalization)

Distribution by Scientific Domains


Selected Abstracts


Effect of immune serum and role of individual Fc, receptors on the intracellular distribution and survival of Salmonella enterica serovar Typhimurium in murine macrophages

IMMUNOLOGY, Issue 2 2006
Hazel Uppington
Summary Immune serum has a protective role against Salmonella infections in mice, domestic animals and humans. In this study, the effect of antibody on the interaction between murine macrophages and S. enterica serovar Typhimurium was examined. Detailed analysis at the single-cell level demonstrated that opsonization of the bacteria with immune serum enhanced bacterial uptake and altered bacterial distribution within individual phagocytic cells. Using gene-targeted mice deficient in individual Fc gamma receptors it was shown that immune serum enhanced bacterial internalization by macrophages via the high-affinity immunoglobulin G (IgG) receptor, Fc gamma receptor I. Exposure of murine macrophages to S. enterica serovar Typhimurium opsonized with immune serum resulted in increased production of superoxide, leading to enhanced antibacterial functions of the infected cells. However, opsonization of bacteria with immune serum did not increase either nitric oxide production in response to S. enterica serovar Typhimurium or fusion of phagosomes with lysosomes. [source]


An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid

MOLECULAR MICROBIOLOGY, Issue 4 2004
Christopher M. Waters
Summary Aggregation substance (AS), a plasmid-encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS-mediated aggregation of enterococcal cells could involve the binding of this protein to cell wall lipoteichoic acid (LTA). Here, a method to purify an undegraded form of Asc10, the AS of the plasmid pCF10, is described. Using this purified protein, direct binding of Asc10 to purified E. faecalis LTA was demonstrated. Equivalent binding of Asc10 to LTA purified from INY3000, an E. faecalis strain that is incapable of aggregation, was also observed. Surprisingly, mutations in a previously identified aggregation domain from amino acids 473 to 683 that abolished aggregation had no effect on LTA binding. In frame deletion analysis of Asc10 was used to identify a second aggregation domain located in the N-terminus of the protein from amino acids 156 to 358. A purified Asc10 mutant protein lacking this domain showed reduced LTA binding, while a purified N-terminal fragment from amino acids 44,331 had high LTA binding. Like the previously described aggregation domain, the newly identified Asc10(156,358) aggregation domain was also required for efficient internalization of E. faecalis into HT-29 enterocytes. Thus, Asc10 possess two distinct domains required for aggregation and eukaryotic cell internalization: an N-terminal domain that promotes binding to LTA and a second domain located near the middle of the protein. [source]


Addressing the effects of Salmonella internalization in host cell signaling on a reverse-phase protein array

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 14 2009
Cristina Molero
Abstract Through acute enteric infection, Salmonella invades host enterocytes and reproduces intracellularly into specialized vacuolae. This involves changes in host cell signaling elicited by bacterial proteins delivered via type III secretion systems (TTSS). One of the two TTSSs of Salmonella enterica serovar Typhimurium encoded by the Salmonella pathogenicity island-1, triggers bacterial internalization. Among the effector proteins translocated by this TTSS, the GTPase modulator SopE/E2 and the phosphoinositide phosphatase SigD are known to play key roles in these processes. To better understand their contribution to re-programming host cell pathways, we used ZeptoMARK reverse-phase protein array technology, which allows printing 32-sample lysate arrays that can be analyzed with phospho-specific antibodies to evaluate the phosphorylation of signaling proteins. Lysates were obtained at different times after infection of HeLa cells with WT, TTSS-deficient, sopE/E2 and sigD single and double deletants, as well as different sigD Salmonella mutants. Our analysis detected activation of p38, JNK and ERK mitogen-activated protein kinases, mainly dependent on SopE/E2, as well as SigD-dependent phosphorylation of PKB/Akt and its targets GSK-3, and FKHR/FoxO. This is the first time that reverse-phase protein array technology is used in the cellular microbiology field, demonstrating its value to screen for host signaling events through bacterial infection. [source]


Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway

CELLULAR MICROBIOLOGY, Issue 1 2009
Oliver Goldmann
Summary Macrophages are crucial components of the host defence against Streptococcus pyogenes. Here, we demonstrate the ability of S. pyogenes to kill macrophages through the activation of an inflammatory programmed cell death pathway. Macrophages exposed to S. pyogenes exhibited extensive cytoplasmic vacuolization, cellular and organelle swelling and rupture of the plasma membrane typical of oncosis. The cytotoxic effect of S. pyogenes on macrophages is mediated by the streptococcal cytolysins streptolysin S and streptolysin O and does not require bacterial internalization. S. pyogenes -induced death of macrophages was not affected by the addition of osmoprotectant, implicating the activation of an orchestrated cell death pathway rather than a simple osmotic lysis. This programme cell death pathway involves the loss of mitochondria transmembrane potential (,,m) and was inhibited by the addition of exogenous glycine, which has been shown to prevent necrotic cell death by blocking the opening of death channels in the plasma membrane. The production of reactive oxygen species and activation of calpains were identified as mediators of the cell death process. We conclude that activation of the inflammatory programmed cell death pathway in macrophages could constitute an important pathogenic mechanism by which S. pyogenes evades host immune defences and causes disease. [source]