Bacterial Homologues (bacterial + homologue)

Distribution by Scientific Domains


Selected Abstracts


Organelle-specific expression of subunit ND5 of human complex I (NADH dehydrogenase) alters cation homeostasis in Saccharomyces cerevisiae

FEMS YEAST RESEARCH, Issue 6 2010
Wojtek Steffen
Abstract The ND5 component of the respiratory complex I is a large, hydrophobic subunit encoded by the mitochondrial genome. Its bacterial homologue, the NDH-1 subunit NuoL, acts as a cation transporter in the absence of other NDH-1 subunits. Mutations in human ND5 are frequently observed in neurodegenerative diseases. Wild type and mutant variants of ND5 fused to GFP or a FLAG peptide were targeted to the endoplasmatic reticulum (ER) or the inner mitochondrial membrane of Saccharomyces cerevisiae, which lacks an endogenous complex I. The localization of ND5 fusion proteins was confirmed by microscopic analyses of S. cerevisiae cells, followed by cellular fractionation and immunostaining. The impact of the expression of ND5 fusion proteins on the growth of S. cerevisiae in the presence and absence of added salts was studied. ER-resident ND5 conferred Li+ sensitivity to S. cerevisiae, which was lost when the E145V variant of ND5 was expressed. All variants of ND5 tested led to increased resistance of S. cerevisiae at high external concentrations of Na+ or K+. The data seem to indicate that ND5 influences the salt homeostasis of S. cerevisiae independent of other complex I subunits, and paves the way for functional studies of mutations found in mitochondrially encoded complex I genes. [source]


Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2010
Rita Bartossek
Summary Ammonia-oxidizing archaea are frequent and ubiquitous inhabitants of terrestrial and marine environments. As they have only recently been detected, most aspects of their metabolism are yet unknown. Here we report on the occurrence of genes encoding potential homologues of copper-dependent nitrite reductases (NirK) in ammonia-oxidizing archaea of soils and other environments using metagenomic approaches and PCR amplification. Two pairs of highly overlapping 40 kb genome fragments, each containing nirK genes of archaea, were isolated from a metagenomic soil library. Between 68% and 85% of the open reading frames on these genome fragments had homologues in the genomes of the marine archaeal ammonia oxidizers Nitrosopumilus maritimus and Cenarchaeum symbiosum. Extensions of NirK homologues with C-terminal fused amicyanin domains were deduced from two of the four fosmids indicating structural variation of these multicopper proteins in archaea. Phylogenetic analyses including all major groups of currently known NirK homologues revealed that the deduced protein sequences of marine and soil archaea were separated into two highly divergent lineages that did not contain bacterial homologues. In contrast, another separated lineage contained potential multicopper oxidases of both domains, archaea and bacteria. More nirK gene variants directly amplified by PCR from several environments indicated further diversity of the gene and a widespread occurrence in archaea. Transcription of the potential archaeal nirK in soil was demonstrated at different water contents, but no significant increase in transcript copy number was observed with increased denitrifying activity. [source]


The crystal structure of a plant 2C -methyl- D -erythritol 4-phosphate cytidylyltransferase exhibits a distinct quaternary structure compared to bacterial homologues and a possible role in feedback regulation for cytidine monophosphate

FEBS JOURNAL, Issue 5 2006
Mads Gabrielsen
The homodimeric 2C -methyl- d -erythritol 4-phosphate cytidylyltransferase contributes to the nonmevalonate pathway of isoprenoid biosynthesis. The crystal structure of the catalytic domain of the recombinant enzyme derived from the plant Arabidopsis thaliana has been solved by molecular replacement and refined to 2.0 Å resolution. The structure contains cytidine monophosphate bound in the active site, a ligand that has been acquired from the bacterial expression system, and this observation suggests a mechanism for feedback regulation of enzyme activity. Comparisons with bacterial enzyme structures, in particular the enzyme from Escherichia coli, indicate that whilst individual subunits overlay well, the arrangement of subunits in each functional dimer is different. That distinct quaternary structures are available, in conjunction with the observation that the protein structure contains localized areas of disorder, suggests that conformational flexibility may contribute to the function of this enzyme. [source]


A GyrB-GyrA fusion protein expressed in yeast cells is able to remove DNA supercoils but cannot substitute eukaryotic topoisomerase II

GENES TO CELLS, Issue 3 2002
Sonia Trigueros
Background: Type II topoisomerases are a highly conserved class of enzymes which transport one double-stranded DNA segment through a transient break in another. Whereas the eukaryotic enzymes are homodimers of a single polypeptide, their bacterial homologues are homodimers of two independently coded protein subunits. Unlike eukaryotic topoisomerase II and bacterial topoisomerase IV, DNA gyrase is a bacterial type II topoisomerase which specializes in intramolecular DNA transport. Results: We have fused the Escherichia coli coding sequences for the proteins GyrB and GyrA, which comprise DNA gyrase. This fusion was expressed in yeast cells and yielded the expected full-length protein product. When it was expressed in ,top1- top2-4 yeast cells, the fusion protein compensated their slow growth and reverted their elevated chromosomal excision of ribosomal genes. Furthermore, it removed DNA positive supercoils. The fusion protein, however, was unable to complement the temperature-dependent lethality of top2-4 cells. Conclusion: Fusion of the E. coli GyrB and GyrA proteins leads to a catalytically active topoisomerase which compensates several phenotypic traits attributed to unconstrained DNA supercoiling in topoisomerase-deficient cells. However, since the fusion protein cannot substitute for topoisomerase II, it may be efficient in intramolecular but not intermolecular DNA passage, resembling the catalytic properties of DNA gyrase. [source]


Structure of Mycobacterium tuberculosis Rv2714, a representative of a duplicated gene family in Actinobacteria

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2009
Martin Graña
The gene Rv2714 from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is a representative member of a gene family that is largely confined to the order Actinomycetales of Actinobacteria. Sequence analysis indicates the presence of two paralogous genes in most mycobacterial genomes and suggests that gene duplication was an ancient event in bacterial evolution. The crystal structure of Rv2714 has been determined at 2.6,Å resolution, revealing a trimer in which the topology of the protomer core is similar to that observed in a functionally diverse set of enzymes, including purine nucleoside phosphorylases, some carboxypeptidases, bacterial peptidyl-tRNA hydrolases and even the plastidic form of an intron splicing factor. However, some structural elements, such as a ,-hairpin insertion involved in protein oligomerization and a C-terminal ,-helical domain that serves as a lid to the putative substrate-binding (or ligand-binding) site, are only found in Rv2714 bacterial homologues and represent specific signatures of this protein family. [source]