Bacterial Agents (bacterial + agent)

Distribution by Scientific Domains


Selected Abstracts


Yersinia ruckeri infections in salmonid fish

JOURNAL OF FISH DISEASES, Issue 5 2007
E Tobback
Abstract Yersinia ruckeri is the causative agent of yersiniosis or enteric redmouth disease leading to significant economic losses in salmonid aquaculture worldwide. Infection may result in a septicaemic condition with haemorrhages on the body surface and in the internal organs. Despite the significance of the disease, very little information is available on the pathogenesis, hampering the development of preventive measures to efficiently combat this bacterial agent. This review discusses the agent and the disease it causes. The possibility of the presence of similar virulence markers and/or pathogenic mechanisms between the Yersinia species which elicit disease in humans and Y. ruckeri is also examined. [source]


Use of an in-house approach to study the three-dimensional structures of various outer membrane proteins: structure of the alcaligin outer membrane transporter FauA from Bordetella pertussis

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2009
Karl Brillet
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3,Å resolution is discussed. [source]


Models of white matter injury: Comparison of infectious, hypoxic-ischemic, and excitotoxic insults

DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2002
Henrik Hagberg
Abstract White matter damage (WMD) in preterm neonates is strongly associated with adverse outcome. The etiology of white matter injury is not known but clinical data suggest that ischemia-reperfusion and/or infection-inflammation are important factors. Furthermore, antenatal infection seems to be an important risk factor for brain injury in term infants. In order to explore the pathophysiological mechanisms of WMD and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, numerous novel animal models have been developed over the past decade. WMD can be induced by antenatal or postnatal administration of microbes (E. coli or Gardnerella vaginalis), virus (border disease virus) or bacterial products (lipopolysaccharide, LPS). Alternatively, various hypoperfusion paradigms or administration of excitatory amino acid receptor agonists (excitotoxicity models) can be used. Irrespective of which insult is utilized, the maturational age of the CNS and choice of species seem critical. Generally, lesions with similarity to human WMD, with respect to distribution and morphological characteristics, are easier to induce in gyrencephalic species (rabbits, dogs, cats and sheep) than in rodents. Recently, however, models have been developed in rats (PND 1,7), using either bilateral carotid occlusion or combined hypoxia-ischemia, that produce predominantly white matter lesions. LPS is the infectious agent most often used to produce WMD in immature dogs, cats, or fetal sheep. The mechanism whereby LPS induces brain injury is not completely understood but involves activation of toll-like receptor 4 on immune cells with initiation of a generalized inflammatory response resulting in systemic hypoglycemia, perturbation of coagulation, cerebral hypoperfusion, and activation of inflammatory cells in the CNS. LPS and umbilical cord occlusion both produce WMD with quite similar distribution in 65% gestational sheep. The morphological appearance is different, however, with a more pronounced infiltration of inflammatory cells into the brain and focal microglia/macrophage ("inflammatory WMD") in response to LPS compared to hypoperfusion evoking a more diffuse microglial response usually devoid of cellular infiltrates ("ischemic WMD"). Furthermore, low doses of LPS that by themselves have no adverse effects in 7-day-old rats (maturation corresponding to the near term human fetus), dramatically increase brain injury to a subsequent hypoxic-ischemic challenge, implicating that bacterial products can sensitize the immature CNS. Contrary to this finding, other bacterial agents like lipoteichoic acid were recently shown to induce tolerance of the immature brain suggesting that the innate immune system may respond differently to various ligands, which needs to be further explored. MRDD Research Reviews 2002;8:30,38. © 2002 Wiley-Liss, Inc. [source]


Host's innate immune response to fungal and bacterial agents in vitro: up-regulation of interleukin-15 gene expression resulting in enhanced natural killer cell activity

IMMUNOLOGY, Issue 2 2003
Phay Tran
Summary Natural killer (NK) cells play an important role in the first line of defence against viral infections. We have shown earlier that exposure of human peripheral blood mononuclear cells (PBMC) to viruses results in rapid up-regulation of NK cell activity via interleukin-15 (IL-15) induction, and that this mechanism curtails viral infection in vitro. By using Candida albicans, Escherichia coli and Staphylococcus aureus, we now show here that exposure of PBMC to fungi and bacteria also results in an immediate increase of NK cytotoxicity. Reverse transcriptase,polymerase chain reaction and Western blot analyses as well as the use of antibodies against different cytokines revealed that IL-15 induction played a predominant role in this NK activation. These results indicate that IL-15 is also involved in the innate immune response against fungal and bacterial agents. [source]


The p38 mitogen-activated protein kinase regulates interleukin-1,-induced IL-8 expression via an effect on the IL-8 promoter in intestinal epithelial cells

IMMUNOLOGY, Issue 4 2003
Kuljit Parhar
Summary Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-,B, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-,B in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1, activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-,B signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of I,B,, the binding partner of NF-,B. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-,B luciferase construct, using both SB 203580 and dominant,negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription,polymerase chain reaction (RT,PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8,luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant,negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-,B. [source]


Piperidine mediated synthesis of n -heterocyclic chalcones and their antibacterial activity

JOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 1 2010
P. Venkatesan
The chalcones 1-(2,-hydroxy-aryl)-3-(1-indol-3-yl)-prop-2-en-1-one (3) and 1-(2,-hydroxy-aryl)-3-(2-chloroquinolin-3-yl)-prop-2-en-1-one (6) were synthesised by piperidine mediated condensation of an ethanolic solution of an o -hydroxyacetophenone (1) with corresponding heteroaryl-3-carboxaldehyde. The structures have been established on the basis of elemental (C, H, N) analysis, UV, IR, 1H NMR spectral data. The compounds 3 and 6 were screened for antimicrobial activities against a variety of bacterial agents. J. Heterocyclic Chem., 2010. [source]


Isolation of Pseudomonas spp. from Diseased Capsicum chinense (Habanero Pepper) Plants in Yucatan, Mexico

JOURNAL OF PHYTOPATHOLOGY, Issue 7-8 2007
F. Moguel-Salazar
Abstract Capsicum chinense (habanero pepper) grown in Yucatan, Mexico, is frequently diseased by plant bacterial pathogens, but the bacterial agents remain unidentified. Bacteria associated with diseased C. chinense were isolated and characterized. Two isolates, ChA11 and ChA14, induced hypersensitive response in C. chinense plantlets and caused rot in C. chinense fruit and potato slices. Molecular identification showed both to be Pseudomonas spp. This is the first report identifying Pseudomonas spp. associated with C. chinense grown in Yucatan, and may represent a first step towards developing control measures against this insidious pathogen. [source]