Home About us Contact | |||
Bachmann's Bundle (bachmann + bundle)
Selected AbstractsFrequency Analysis of Atrial Electrograms Identifies Conduction Pathways from the Left to the Right Atrium During Atrial Fibrillation,Studies in Two Canine ModelsJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2009KYUNGMOO RYU Ph.D. Studies of atrial fibrillation (AF) have demonstrated that a stable rhythm of very short cycle length in the left atrium (LA) can cause fibrillatory conduction in the rest of the atria. We tested the hypothesis that fast Fourier transform (FFT) analysis of atrial electrograms (AEGs) during this AF will rapidly and reliably identify LA-to-right atrium (RA) conduction pathway(s) generated by the driver. Methods and Results: During induced atrial tachyarrhythmias in the canine sterile pericarditis and rapid ventricular pacing-induced congestive heart failure models, 380,404 AEGs were recorded simultaneously from epicardial electrodes on both atria. FFT analysis of AEGs during AF demonstrated a dominant frequency peak in the LA (driver), and multiple frequency peaks in parts of the LA and the most of the RA. Conduction pathways from the LA driver to the RA varied from study-to-study. They were identified by the presence of multiple frequency peaks with one of the frequency peaks at the same frequency as the driver, and traveled (1) inferior to the inferior vena cava (IVC); (2) between the superior vena cava and the right superior pulmonary vein (RSPV); (3) between the RSPV and the right inferior pulmonary vein (RIPV); (4) between the RIPV and the IVC; and (5) via Bachmann's bundle. Conduction pathways identified by FFT analysis corresponded to the conduction pathways found in classical sequence of activation mapping. Computation time for FFT analysis for each AF episode took less than 5 minutes. Conclusion: FFT analysis allowed rapid and reliable detection of the LA-to-RA conduction pathways in AF generated by a stable and rapid LA driver. [source] Fractionation of Electrograms and Linking of Activation During Pharmacologic Cardioversion of Persistent Atrial Fibrillation in the GoatJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2004ZHAOLIANG SHAN M.D. Introduction: During atrial fibrillation (AF), there is fractionation of extracellular potentials due to head-to-tail interaction and slow conduction of fibrillation waves. We hypothesized that slowing of the rate of AF by infusion of a Class I drug would increase the degree of organization of AF. Methods and Results: Seven goats were instrumented with 83 epicardial electrodes on the left atrium, left atrial appendage, Bachmann's bundle, right atrium, and right atrial appendage. AF was induced and maintained by an automatic atrial fibrillator. After AF had persisted for 4 weeks, the Class IC drug cibenzoline was infused at a rate of 0.1 mg/kg/min. AF cycle length (AFCL), the percentage of fractionated potentials, conduction velocity (CV), and direction of propagation of the fibrillation waves were measured during baseline, after AFCL was increased by 20, 40, 60, and 80 ms, and shortly before cardioversion. Infusion of cibenzoline increased the mean of the median AFCLs from 96 ± 6 ms to 207 ± 43 ms (P < 0.0001). The temporal variation in AFCL in different parts of the atria was 8% to 20% during control and, with the exception of Bachmann's bundle, was not significantly reduced during cibenzoline infusion. CV decreased from 76 ± 14 ms to 52 ± 9 cm/s (P < 0.01). Cibenzoline increased the percentage of single potentials from 81%± 4% to 91%± 4% (P < 0.01) and decreased the incidence of double potentials from 14%± 4% to 7 ± 5% (P < 0.01) and multiple potentials from 5%±% to 1%± 2% (P < 0.001). Whereas during control, linking (consecutive waves propagating in the same direction) during seven or more beats occurred in 9%± 15% of the cycles, after cibenzoline the degree of linking had increased to 40%± 33% (P < 0.05). During the last two beats before cardioversion, there was a sudden prolongation in AFCL from 209 ± 37 ms to 284 ± 92 ms (P < 0.01) and a strong reduction in fractionated potentials (from 22%± 12% to 6%± 5%, P < 0.05). Conclusion: The Class IC drug cibenzoline causes a decrease in fractionation of fibrillation electrograms and an increase in the degree of linking during AF. This supports the observation that Class I drugs widen the excitable gap during AF. (J Cardiovasc Electrophysiol, Vol. 15, pp. 572-580, May 2004) [source] Adrenergic-Cholinergic Interaction that Modulates Repolarization in the Atrium is Altered with AgingJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2002EUGENE A. SOSUNOV Ph.D. Autonomic Modulation of Atrial Repolarization.Introduction: Aging is associated with involution of both limbs of the autonomic nervous system, and the prejunctional and postjunctional effects of adrenergic and cholinergic stimulation are altered with senescence. Hence, postjunctional age-related changes in adrenergic-cholinergic interaction are a likely occurrence and may contribute to an altered substrate for arrhythmias. Methods and Results: Microelectrode techniques were used to record action potentials from epicardial slices of Bachmann's bundles of dogs aged 3 to 5 years (adult) and 8 to 12 years (old) in the absence or presence of acetylcholine and isoproterenol (separately and in combination). In control, action potential duration to 90% repolarization (APD) was longer in old atria. Acetylcholine (10,8 to 10,5 mol/L) in a concentration-dependent manner hyperpolarized and shortened APD in both tissues, with more prominent effects in the old. The effects of isoproterenol (10,9 to 10,6 mol/L) to elevate the plateau and shorten APD were about the same in both adult and old tissues. In adults, low concentrations of isoproterenol (10,9 and 10,8 mol/L) significantly prolonged APD, which had been first shortened by acetylcholine. This effect of isoproterenol was decreased in old atrial tissue, resulting in shorter APD in old than adult atria in the combined presence of beta-adrenergic and muscarinic agonists. Conclusion: In adult Bachmann's bundle, beta-adrenergic stimulation effectively operates as a "brake" to decrease the extent of cholinergic-induced APD shortening. The action of beta-adrenergic stimulation to antagonize acetylcholine-induced acceleration of repolarization declines with age, which may contribute to an altered arrhythmogenic substrate. [source] Electroanatomic Analysis of Sinus Impulse Propagation in Normal Human AtriaJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2002ROBERTO DE PONTI M.D. Sinus Impulse Propagation in Normal Human Atria.Introduction: Better understanding of atrial propagation during sinus rhythm (SR) in normal hearts under the most normal physiologic conditions may be propaedeutic to pathophysiologic studies of complex atrial arrhythmias. In this study, qualitative and quantitative analyses of sinus impulse propagation in both atria were performed by electroanatomic mapping in patients with no organic heart disease who were undergoing an electrophysiologic procedure. Methods and Results: Seven patients (5 men and 2 women; age 37 ± 11 years) undergoing ablation of a left-sided accessory pathway were considered. Associated heart disease and coexisting atrial arrhythmias were excluded. After obtaining informed consent, electroanatomic mapping of both atria was performed during SR using a nonfluoroscopic system in the postablation phase. Mapping was accomplished in all patients with no complications. Qualitative analysis showed that sinus impulse propagation gives a reproducible activation pattern with minor individual variations. During interatrial propagation, two breakthroughs (anterior and posterior) in the left atrium are observed in the majority of cases. The anterior breakthrough, which reflects conduction over Bachmann's bundle, is predominant and shows a peculiar "preexcitation-like" endocardial activation pattern. Quantitative analysis showed minimal individual variations of propagation time intervals. Atria are activated simultaneously for 65% ± 9% of the duration of the atrial systolic time interval. Conclusion: In normal humans, electroanatomic mapping of SR identifies a typical and reproducible propagation pattern during SR. Bachmann's bundle plays the most important role in interatrial propagation. Atria are activated simultaneously by sinus impulse for a relevant portion of the systolic time interval. [source] Characterization of the Acute Cardiac Electrophysiologic Effects of Ethanol in DogsALCOHOLISM, Issue 9 2007Guilherme Fenelon Background: Alcohol has been related to atrial fibrillation (holiday heart syndrome), but its electrophysiologic actions remain unclear. Methods: We evaluated the effects of alcohol in 23 anesthetized dogs at baseline and after 2 cumulative intravenous doses of ethanol: first dose 1.5 ml/kg (plasma level 200 mg/dl); second dose 1.0 ml/kg (279 mg/dl). In 13 closed-chest dogs (5 with intact autonomic nervous system, 5 under combined autonomic blockade and 3 sham controls), electrophysiologic evaluation and monophasic action potential (MAP) recordings were undertaken in the right atrium and ventricle. In 5 additional dogs, open-chest biatrial epicardial mapping with 8 bipoles on Bachmann's bundle was undertaken. In the remaining 5 dogs, 2D echocardiograms and ultrastructural analysis were performed. Results: In closed-chest dogs with intact autonomic nervous system, ethanol had no effects on surface electrocardiogram and intracardiac variables. At a cycle length of 300 milliseconds, no effects were noted on atrial and ventricular refractoriness and on the right atrial MAP. These results were not altered by autonomic blockade. No changes occurred in sham controls. In open-chest dogs, ethanol did not affect inter-atrial conduction time, conduction velocity, and wavelength. Atrial arrhythmias were not induced in any dog, either at baseline or after ethanol. Histological and ultrastructural findings were normal but left ventricular (LV) ejection fraction decreased in treated dogs (77 vs. 73 vs. 66%; p = 0.04). Conclusion: Ethanol at medium and high doses depresses LV systolic function but has no effects on atrial electrophysiological parameters. These findings suggest that acute alcoholic intoxication does not directly promote atrial arrhythmias. [source] Prevention of the Initiation of Atrial Fibrillation: Mechanism and Efficacy of Different Atrial Pacing ModesPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2000WEN-CHUNG YU Several atrial pacing modes have been reported to be effective in the prevention of atrial fibrillation (AF); they included biatrial pacing, dual site right atrial pacing, Bachmann's bundle (BB) pacing, and coronary sinus pacing. However, the relative efficacy and electrophysiological mechanisms of these pacing modes in the prevention of AF are not clear. In 15 patients (age 54 ± 14 years) with paroxysmal AF, P wave duration, effective refractory period, and atrial conduction time were determined with six different atrial drive pacings, that were right atrial appendage (RAA), BB, right posterior interatrial septum (RPS), distal coronary sinus (DCS), RAA plus RPS simultaneously (DSA), and RAA plus DCS simultaneously (BiA). All these patients consistently had AF induced with early RAA extrastimulation coupling to RAA drive pacing. No patient had AF induced with RAA extrastimulation coupled to BB, RPS, or DCS drive pacing, but seven and eight patients had AF induced with RAA extrastimulation coupled to DSA and BiA drive pacing, respectively. The P wave duration was longest during RAA pacing, and became shorter during other atrial pacing modes. Analysis of electrophysiological change showed that early RAA extrastimulation coupled to RAA drive pacing caused the longest atrial conduction delay among these atrial pacing modes; BB, RPS, and DCS drive pacing caused a greater reduction of this conduction delay than DSA and BiA drive pacing. In addition, the effective refractory periods of RAA determined with BB, RPS, and DCS drive pacing were similar and longer than that determined with DSA and BiA drive pacing. In patients with paroxysmal AF, this arrhythmia was readily induced with RAA extrastimuli coupled to RAA drive pacing. BB, RPS, and DCS pacing were similar and more effective than DSA and BiA pacing in preventing AF. [source] Adrenergic-Cholinergic Interaction that Modulates Repolarization in the Atrium is Altered with AgingJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2002EUGENE A. SOSUNOV Ph.D. Autonomic Modulation of Atrial Repolarization.Introduction: Aging is associated with involution of both limbs of the autonomic nervous system, and the prejunctional and postjunctional effects of adrenergic and cholinergic stimulation are altered with senescence. Hence, postjunctional age-related changes in adrenergic-cholinergic interaction are a likely occurrence and may contribute to an altered substrate for arrhythmias. Methods and Results: Microelectrode techniques were used to record action potentials from epicardial slices of Bachmann's bundles of dogs aged 3 to 5 years (adult) and 8 to 12 years (old) in the absence or presence of acetylcholine and isoproterenol (separately and in combination). In control, action potential duration to 90% repolarization (APD) was longer in old atria. Acetylcholine (10,8 to 10,5 mol/L) in a concentration-dependent manner hyperpolarized and shortened APD in both tissues, with more prominent effects in the old. The effects of isoproterenol (10,9 to 10,6 mol/L) to elevate the plateau and shorten APD were about the same in both adult and old tissues. In adults, low concentrations of isoproterenol (10,9 and 10,8 mol/L) significantly prolonged APD, which had been first shortened by acetylcholine. This effect of isoproterenol was decreased in old atrial tissue, resulting in shorter APD in old than adult atria in the combined presence of beta-adrenergic and muscarinic agonists. Conclusion: In adult Bachmann's bundle, beta-adrenergic stimulation effectively operates as a "brake" to decrease the extent of cholinergic-induced APD shortening. The action of beta-adrenergic stimulation to antagonize acetylcholine-induced acceleration of repolarization declines with age, which may contribute to an altered arrhythmogenic substrate. [source] |