Source Locations (source + locations)

Distribution by Scientific Domains


Selected Abstracts


Analysis of adobe wall composition at the Chaves-Hummingbird Site, New Mexico, by diffuse reflectance spectrophotometry

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 8 2007
William Balsam
This article investigates adobe wall construction materials utilized by prehistoric inhabitants of Chaves-Hummingbird Pueblo, an ancestral Pueblo village located ,20 miles west of Albuquerque, New Mexico. The walls were constructed with native clay-rich soils some time between approximately 1275,1450 A.D. Samples were analyzed with a diffuse reflectance spectrophotometer from the near ultraviolet (NUV) through the visible (VIS) and into the near infrared (NIR) region of the electromagnetic spectrum. Cluster analysis of samples from 275 adobe walls and 36 soil locations surrounding the pueblo room blocks indicates four clusters. Comparison of typical samples from the four clusters indicates that they are very similar and are distinguished by minor variations in the three primary spectrally determined components, Na-Ca montmorillonite, bentonite, and goethite. In general, clusters correspond with room construction episodes that are discernible through patterns of wall bonding and abutment recorded during the archaeological investigation of the site. This suggests that during different phases of construction the source of the wall adobe changed. Many of the soil samples are included in wall clusters and therefore reveal a potential source of material used for adobe, adjacent soils. However, not all the soil surrounding the pueblo grouped with wall clusters indicating a preference for certain soil types and that some soils were probably unsuitable for making adobe. Therefore, diversity in spectrally identified construction materials provides insights into source locations and possible construction preferences of the site inhabitants. © 2007 Wiley Periodicals, Inc. [source]


Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sources

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006
S. Martin
SUMMARY We investigate the geometry of deep subduction zone waveguides (depth >100 km). The wavefield characteristics for up-dip profiles are described and compared with data recorded at the Chile,Peru subduction zone. Observed distorted P onsets at stations in northern Chile near 21°S can be matched by 2-D finite difference simulations of a thin low-velocity layer (LVL) atop the slab in an IASP91 velocity model. The replacement of the LVL by simple random velocity undulations in the slab in the same model cannot explain the observations. Varying slab geometries are investigated and the distribution of guided wave onsets originating in deep waveguides is predicted relative to the slab surface. Further, double couple source position and orientation is explored and found to be closely limited by the guided wave observations. Sources situated above the layer and at distances more than 2 layer widths below the subducted Moho are not suitable. For the remaining favourable source locations, a strong link between pulse shapes and fault plane dip angle is evident. We conclude that up-dip guided wave observations at subduction zones follow a simple pattern given by slab geometry and modified by source position. The resulting onsets are shaped by layer thickness and velocity contrast and further influenced by the shape of the slab surface. [source]


P - and S -velocity images of the lithosphere,asthenosphere system in the Central Andes from local-source tomographic inversion

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2006
Ivan Koulakov
SUMMARY About 50 000 P and S arrival times and 25 000 values of t* recorded at seismic arrays operated in the Central Andes between 20°S and 25°S in the time period from 1994 to 1997 have been used for locating more than 1500 deep and crustal earthquakes and creating 3-D P, S velocity and Qp models. The study volume in the reference model is subdivided into three domains: slab, continental crust and mantle wedge. A starting velocity distribution in each domain is set from a priori information: in the crust it is based on the controlled sources seismic studies; in slab and mantle wedge it is defined using relations between P and S velocities, temperature and composition given by mineral physics. Each iteration of tomographic inversion consists of the following steps: (1) absolute location of sources in 3-D velocity model using P and S arrival times; (2) double-difference relocation of the sources and (3) simultaneous determination of P and S velocity anomalies, P and S station corrections and source parameters by inverting one matrix. Velocity parameters are computed in a mesh with the density of nodes proportional to the ray density with double-sided nodes at the domain boundaries. The next iteration is repeated with the updated velocity model and source parameters obtained at the previous step. Different tests aimed at checking the reliability of the obtained velocity models are presented. In addition, we present the results of inversion for Vp and Vp/Vs parameters, which appear to be practically equivalent to Vp and Vs inversion. A separate inversion for Qp has been performed using the ray paths and source locations in the final velocity model. The resulting Vp, Vs and Qp distributions show complicated, essentially 3-D structure in the lithosphere and asthenosphere. P and S velocities appear to be well correlated, suggesting the important role of variations of composition, temperature, water content and degree of partial melting. [source]


Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995,2002

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2010
Harald Sodemann
Abstract This study presents a first quantitative climatology of the moisture sources for precipitation in the European Alps, covering a 7-year period from January 1995 to August 2002. Using a Lagrangian moisture source diagnostic and data from the ERA-40: European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis, the contribution of the following moisture sources to annual mean precipitation has been diagnosed: North Atlantic ocean 39.6%, Mediterranean 23.3%, North Sea and Baltic Sea 16.6%, and European land surface 20.8%. However, strong seasonal variability of the influence of various moisture sources is evident. Most notably, moisture transport to the Alps changes from an oceanic mode characterised by dominantly North Atlantic moisture sources during winter to a continental mode during summer with a marked contribution from Central European land areas. The method identifies inter-annual variability with respect to the location of the moisture sources in the North Atlantic, and the importance of precipitation recycling during summer. Despite the smoothed Alpine orography in the ERA-40 model, the Alps act as an effective barrier for meridional moisture transport, leading to distinct mean moisture source locations at their northern and southern slopes. The Northern Alps are predominantly influenced by the North Atlantic ocean and Central European land sources with a clear seasonality and limited monthly variability. In contrast, the Southern Alps receive a large fraction of precipitation from the Mediterranean with considerable month-to-month variability. Possible implications of these differences for precipitation extremes and stable isotopes in precipitation are discussed. Copyright © 2009 Royal Meteorological Society [source]


Inferring ancient Agave cultivation practices from contemporary genetic patterns

MOLECULAR ECOLOGY, Issue 8 2010
KATHLEEN C. PARKER
Abstract Several Agave species have played an important ethnobotanical role since prehistory in Mesoamerica and semiarid areas to the north, including central Arizona. We examined genetic variation in relict Agave parryi populations northeast of the Mogollon Rim in Arizona, remnants from anthropogenic manipulation over 600 years ago. We used both allozymes and microsatellites to compare genetic variability and structure in anthropogenically manipulated populations with putative wild populations, to assess whether they were actively cultivated or the result of inadvertent manipulation, and to determine probable source locations for anthropogenic populations. Wild populations were more genetically diverse than anthropogenic populations, with greater expected heterozygosity, polymorphic loci, effective number of alleles and allelic richness. Anthropogenic populations exhibited many traits indicative of past active cultivation: fixed heterozygosity for several loci in all populations (nonexistent in wild populations); fewer multilocus genotypes, which differed by fewer alleles; and greater differentiation among populations than was characteristic of wild populations. Furthermore, manipulated populations date from a period when changes in the cultural context may have favoured active cultivation near dwellings. Patterns of genetic similarity among populations suggest a complex anthropogenic history. Anthropogenic populations were not simply derived from the closest wild A. parryi stock; instead they evidently came from more distant, often more diverse, wild populations, perhaps obtained through trade networks in existence at the time of cultivation. [source]


Using analytic signal to determine magnetization/density ratios of geological structures

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009
Wen-Bin Doo
SUMMARY The Poisson theorem provides a simple relationship between the gravity and magnetic potentials, which is useful in interpreting joint data sets of gravity and magnetic data. Based on the simple Poisson theorem, magnetization/density ratio (MDR) can be estimated. However, potential field data is often ambiguous in datum level and multisources interference that may cause bias in interpretation. Here, we propose an improved Poisson theorem to estimate MDR by using analytic signals of gravity and magnetic data. The major advantage of using the analytic signal is that we can also determine the sources locations and boundaries supposing that we know the ambient magnetic parameters. Besides, we can also avoid the determination error from uncertain datum levels. We demonstrate the feasibility of the proposed method in 2-D and 3-D synthetic models. The proposed method is also applied to a profile across the offshore area of northern Taiwan. Comparing with the reflection seismic profile, our result can help identify the existence of a deep-seated igneous body beneath the area of Mienhuayu and Pengchiagu islands off northern Taiwan. [source]