Sound Waves (sound + wave)

Distribution by Scientific Domains


Selected Abstracts


Nasal nitric oxide measurements before and after repeated humming maneuvers

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 12 2003
M. Maniscalco
Abstract Background, It has been recently shown that humming greatly increases nasal nitric oxide (NO). This is most likely owing to a rapid washout of sinus NO caused by the oscillating sound waves. During repeated humming manoeuvres nasal NO gradually decreases, likely because NO accumulated in the sinuses is washed out. Aim, We studied whether humming before measurements would affect nasally exhaled NO. Materials and methods, NO output was measured by the chemiluminescence technique in orally and nasally exhaled air in 38 subjects: 18 healthy subjects (HS), 15 subjects with allergic rhinitis (AR) and five subjects with allergic nasal polyposis (AP). Each subject performed a NO measurement during quiet nasal exhalation either preceded by a period of silence/free speaking or immediately after five consecutive humming manoeuvres (posthumming). Results, Mean nasal NO output (95% CI) after a period of silence/free speaking was 231 nL min,1 (178,284) in HS, 434 nL min,1 (347,522) in AR (P < 0·001) and 262 nL min,1 (163,361) in AP. Post-humming nasal NO output was 16% (5 to 50%) lower in HS and 14% (1 to 49%) lower in AR, while it remained unchanged in AP subjects. Intra-subject coefficient of variation of quiet nasal exhalation was 12% in HS, 13% in AR and 5% in AP. Post humming intraindividual coefficient of variation significantly decreased in both HS and AR, but it did not change in AP. Conclusions, Nasal NO levels measured immediately after repeated humming manoeuvres are consistently lower and more reproducible than nasal NO levels measured after a period of silence or free speaking. Repeated humming effectively empties the sinuses, thereby probably minimizing the normal contribution from the sinuses to nasal NO. This may be useful to better estimate NO output from the nasal cavity mucosa in health and disease. [source]


Development and Evaluation of an Ultrasonic Ground Water Seepage Meter

GROUND WATER, Issue 6 2001
Ronald J. Paulsen
Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 ,m/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology. [source]


Laser irradiation of the guinea pig basilar membrane

LASERS IN SURGERY AND MEDICINE, Issue 3 2004
Gentiana I. Wenzel MD
Abstract Background and Objectives The cochlea is the part of the inner ear that transduces sound waves into neural signals. The basilar membrane, a connective tissue sheet within the cochlea, is tonotopically tuned based on the spatial variation of its mass, stiffness, and damping. These biophysical properties are mainly defined by its constituent collagen fibers. We sought to assess the effect of laser irradiation on collagen within the basilar membrane using histological analysis. Study Design/Materials and Methods Four excised guinea pig cochleae were stained with trypan blue. From these, two were irradiated with a 600 nm pulsed dye laser and two were used as controls. Collagen organization was visualized using polarization microscopy. Results Laser irradiation reduced the birefringence within the basilar membrane as well as within other stained collagen-containing structures. Larger reductions in birefringence were measured when more laser pulses were given. The effects were similar across all turns of each cochlea. Conclusions Laser irradiation causes immediate alterations in collagen organization within the cochlea that can be visualized with polarization microscopy. These alterations may affect cochlear tuning. Ongoing research is aimed at analyzing the effect of laser irradiation on cochlear function. It is conceivable that this technique may have therapeutic benefits for patients with high-frequency sensorineural hearing loss. Lasers Surg. Med. 35:174,180, 2004. © 2004 Wiley-Liss, Inc. [source]


On compactness of the velocity field in the incompressible limit of the full Navier,Stokes,Fourier system on large domains

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 10 2009
Eduard Feireisl
Abstract The incompressible limit for the full Navier,Stokes,Fourier system is studied on a family of domains containing balls of the radius growing with a speed that dominates the inverse of the Mach number. It is shown that the velocity field converges strongly to its limit locally in space, in particular, the effect of the sound waves is eliminated by means of the local decay estimates for the acoustic wave equation. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Nitride based nanotransistors as new sources and detectors of THz radiations

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2008
A. El Fatimy
Abstract The plasma waves in gated two-dimensional electron gas have a linear dispersion law, similar to the sound waves. The transistor channel is acting as a resonator cavity for the plasma waves, which can reach frequencies in the Terahertz (THz) range for a sufficiently short gate length Field Effect Transistors (FETs). THz emission and detection by nanometer III-V transistors have been recently reported. In this work we report on THz emission and detection by nanometer GaN/AlGaN HEMTs. In particular, we show that specific GaN properties allow to observe THz emission up to room temperature. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Ultrasonic measurement of residual wall thickness during gas assisted injection molding,

POLYMER ENGINEERING & SCIENCE, Issue 11 2007
E.C. Brown
Ultrasonic technology provides a powerful and noninvasive method of in-process measurement during injection molding and extrusion. Changes in the velocity, attenuation and reflection coefficients of high frequency sound waves can be related to the state and conditions of the materials through which they propagate. The velocity of an ultrasonic wave changes with density and elastic moduli; this allows information on solidification and material properties to be collected during the molding cycle. The time of flight of the wave is a function of velocity and path length. This paper shows that it can be correlated with the residual wall thickness of polymer in the mold during gas assisted injection molding. POLYM. ENG. SCI., 47:1730,1739, 2007. © 2007 Society of Plastics Engineers [source]