Solution Composition (solution + composition)

Distribution by Scientific Domains


Selected Abstracts


A blinded, crossover study of the efficacy of the ketogenic diet

EPILEPSIA, Issue 2 2009
John M. Freeman
Summary Despite over 80 years of use, the ketogenic diet (KD) has never been tested in a blinded manner. Twenty children with intractable Lennox-Gastaut syndrome (LGS) were fasted 36 h and then randomized to receive the classic KD in conjunction with a solution containing either 60 g/day of glucose or saccharin. Parents and physicians were blinded to both the solution composition and level of ketosis. A crossover to the KD with the alternate solution occurred following the sixth day and a repeat fast. A 24-h electroencephalography (EEG) was obtained at baseline and after each arm. After administration of the solution, there was moderate evidence of a reduction in parent-reported seizures between the glucose and saccharin arms, with a median difference of 1.5 seizures per day (p = 0.07). There was no reduction in the number of EEG-identified events, with a median reduction of 7 events per day (p = 0.33). Ketosis was not completely eliminated in the glucose-added arm. [source]


A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments

GEOBIOLOGY, Issue 5 2008
D. E. LAROWE
ABSTRACT Anaerobic oxidation of methane (AOM) in anoxic marine sediments is a significant process in the global methane cycle, yet little is known about the role of bulk composition, temperature and pressure on the overall energetics of this process. To better understand the biogeochemistry of AOM, we have calculated and compared the energetics of a number of candidate reactions that microorganisms catalyse during the anaerobic oxidation of methane in (i) a coastal lagoon (Cape Lookout Bight, USA), (ii) the deep Black Sea, and (iii) a deep-sea hydrothermal system (Guaymas basin, Gulf of California). Depending on the metabolic pathway and the environment considered, the amount of energy available to the microorganisms varies from 0 to 184 kJ mol,1. At each site, the reactions in which methane is either oxidized to , acetate or formate are generally only favoured under a narrow range of pressure, temperature and solution composition , particularly under low (10,10 m) hydrogen concentrations. In contrast, the reactions involving sulfate reduction with H2, formate and acetate as electron donors are nearly always thermodynamically favoured. Furthermore, the energetics of ATP synthesis was quantified per mole of methane oxidized. Depending on depth, between 0.4 and 0.6 mol of ATP (mol CH4),1 was produced in the Black Sea sediments. The largest potential productivity of 0.7 mol of ATP (mol CH4),1 was calculated for Guaymas Basin, while the lowest values were predicted at Cape Lookout Bight. The approach used in this study leads to a better understanding of the environmental controls on the energetics of AOM. [source]


Transparent Nanocomposites of Radiopaque, Flame-Made Ta2O5/SiO2 Particles in an Acrylic Matrix,

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2005
H. Schulz
Abstract Mixed Ta2O5 -containing SiO2 particles, 6,14,nm in diameter, with closely controlled refractive index, transparency, and crystallinity are prepared via flame spray pyrolysis (FSP) at production rates of 6.7,100,g,h,1. The effect of precursor solution composition on product filler (particle) size, crystallinity, Ta dispersity, and transparency is studied using nitrogen adsorption, X-ray diffraction, optical microscopy, high-resolution transmission electron microscopy (HRTEM), and diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS). Emphasis is placed on the transparency of the composite that is made with Ta2O5/SiO2 filler and dimethylacrylate. Increasing Ta2O5 crystallinity and decreasing Ta dispersity on SiO2 decreases both filler and composite transparencies. Powders with identical specific surface area (SSA), refractive index (RI), and Ta2O5 content (24,wt.-%) show a wide range of composite transparencies, 33,78,%, depending on filler crystallinity and Ta dispersity. Amorphous fillers with a high Ta dispersity and an RI matching that of the polymer matrix lead to the highest composite transparency, 86,%. The composite containing 16.5,wt.-% filler that itself contains 35,wt.-% Ta2O5 has the optimal radiopacity for dental fillings. [source]


Solvent/non-solvent sintering: A novel route to create porous microsphere scaffolds for tissue regeneration

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2008
Justin L. Brown
Abstract Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from ,8 to 41°C and poly (lactide- co -glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 ,m, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


Butanolysis of 2-methylbenzenediazonium ions: product distribution, rate constants of product formation, and activation parameters

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 5 2009
M. José Pastoriza-Gallego
Abstract We have determined the product distributions, the rate constants of product formation and substrate loss, and the activation parameters for the butanolysis of 2-methylbenzenediazonium, 2MBD, tetrafluoroborate in aqueous 1-Butanol (BuOH) solutions by combining UV,VIS spectroscopy, high performance liquid chromatography (HPLC), and a derivatization protocol that traps unreacted 2MBD as a stable azo dye. BuOH/H2O solutions are miscible over a narrow composition range, but in reverse micelles composed of sodium dodecyl sulfate, SDS, BuOH, and water, are miscible between 45,80%. Two major and two minor dediazoniation products are observed, 2-cresol, ArOH, 2-butyl-tolyl-ether, ArOBu, and small amounts of 2-chlorobenzene, ArCl (from HCl added to control solution acidity) and toluene, ArH (a reduction product). Product yields depend on experimental conditions, but quantitative conversion to products is achieved over the entire composition ranges investigated. The observed rate constants, kobs, obtained by monitoring 2MBD loss or by monitoring ArOH or ArOBu formation, are the same and they are only modestly affected by changes in the solution composition. The activation parameters obtained from the effect of temperature on kobs show that the enthalpy of activation is relatively high compared to those found in bimolecular reactions and the entropy of activation is small but positive. The results suggest that 2MBD is mainly sampling in the BuOH-H2O rich interfacial region of the reverse micelle and are consistent with 2MBD decomposing through a DN,+,AN mechanism, i.e., a rate limiting formation of an aryl cation that reacts immediately with nucleophiles. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Determination of the 2,3-pentadienedioic acid enantiomer interconversion energy barrier 1.

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 15 2006
Classical kinetic approach
Abstract A classical kinetic method was used to determine the energy barrier for the interconversion of 2,3-pentadienedioic acid enantiomers. Each individual enantiomer was isolated by collecting the appropriate peaks from the HPLC enantiomeric separation, of racemic 2,3-pentadienedioic acid. The isolated enantiomers were racemized at 22°C using various interconversion times. The ratio of enantiomers in each reaction solution was determined by HPLC at 22°C. The corresponding peak areas of the enantiomers and the interconversion times obtained from the HPLC chromatograms were used to calculate both the interconversion rate constants describing (+) , (,) and (,) , (+) interconversions as well as the energy barriers. It was confirmed that the interconversion of 2,3-pentadienedioic acid enantiomers is a first-order kinetic reaction. Both semiempirical and ab initio methods were used to explore the mechanism of the interconversion of 2,3-pentadienedioic acid enantiomers, and to calculate the interconversion energy barrier. Comparison of the interconversion energy barriers found by the ab initio method (,G# = 110.7 kJ/mol) and by classical kinetics in the mobile phase solution at 22°C (,Gapp = 93.9 ± 0.2 kJ/mol) shows a difference which may be attributed to the different conditions assumed in the theoretical calculation (i. e., a gaseous state) and the actual experimental conditions (i. e., liquid solution) and a possible catalytic effect of the solution composition. [source]


High-Pressure Device for Fluid Extraction from Porous Materials: Application to Cement-Based Materials

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2008
Martin Cyr
A high-pressure device, reaching an axial pressure of 1000 MPa, intended to the extraction of the pore solution of rigid and slightly porous materials, has been developed to improve the efficiency of extraction. This paper gives an application of fluid extraction from mortars made with Portland cement. It includes an experimental study of the performance of the apparatus, and an analysis of the results in terms of efficiency of extraction, repeatability of measurement, and effect of the squeezing pressure on the pore solution composition. Results shows that: (1) the squeezing efficiency using our apparatus is higher than those found in the literature; (2) the measurement uncertainty ranges between 1.5% and 14%; (3) no significant effect of pressure (up to 1000 MPa) is observed for concentrations of Ca, Na, K, and Si. This paper suggests conducting extraction at 1000 MPa, especially on old concrete or concrete made with low W/C ratios. [source]


Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 8 2009
Alicia Marín
Abstract BACKGROUND: There is a need to encourage more sustainable agricultural practices, reducing inputs of water and fertilisers while minimising any negative impact on fruit quality. The effect of irrigation frequency, salinity and potassium and calcium fertilisation on the content of bioactive compounds and quality attributes of green and red peppers grown with and without substrate was evaluated. RESULTS: Low irrigation frequency and salinity improved the quality attributes (dry matter, soluble solids content and titratable acidity) of pepper. Low irrigation frequency increased vitamin C content by 23% in green peppers, while in red fruits it was not affected. In contrast, total carotenoids and provitamin A only increased in red fruits by 30% and 15%, respectively, as a consequence of low irrigation frequency. When the effect of potassium and calcium doses was investigated, it was shown that a high proportion of potassium increased the vitamin C, provitamin A and total phenolic content of red and green peppers, whereas pepper grown at low calcium doses, presented the highest content in carotenoids and provitamin A. CONCLUSION: Low irrigation frequency and fertilisation with high potassium and low calcium doses improved pepper quality increasing the content of bioactive compounds. Copyright © 2009 Society of Chemical Industry [source]


Magneto-transport studies of single ferromagnetic nanowire

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 12 2007
Y. Rheem
Abstract The magnetotransport properites of individual ferromagnetic nanowires (e.g. Ni, Co23Ni77, Ni85Fe15) with 200 nm diameters were investigated. The ferromagnetic nanowires were successfully electrodeposited within an anodized alumina by controlling solution composition, temperature, and current density. Using a magnetic assembly technique, single nanowire was successfully bridged across microfabricated gold elecrodes. The temperature coefficient of resistance for ferromagnetic nanowires was lower than the bulk because of a larger residual resistance from increased electrical scattering in one-dimensional structures. The ferromagnetic nanowires showed typical anisotropic magnetoresistance where the magnetoresistance ratio was lower than bulk values. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Selective imaging of positively charged polar and nonpolar lipids by optimizing matrix solution composition

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2009
Yuki Sugiura
Previous studies have shown that matrix-assisted laser desorption/ionization,imaging mass spectrometry (MALDI-IMS) is useful for studying the distribution of various small metabolites, particularly lipids. However, in this technique, selective ionization of the target molecules is imperative, particularly when analyzing small molecules. Since the sample clean-up procedures available for the MALDI-IMS of small metabolites are limited, the tissue sample will contain numerous molecular species other than the target molecules. These molecules will compete for ionization resulting in severe ion suppression. Hence, it is necessary to develop and optimize a sample preparation protocol for the target molecules. In this study, through model experiments using reference compounds, we optimized the composition of the matrix solution used for positively charged lipids in terms of the concentration of the organic solvent and presence/absence of alkali metal salts. We demonstrated that a high concentration of organic solvent in the matrix solution favors the preferential detection of lipids over peptides. The presence of alkali metal salts in the matrix solution was favorable for the detection of polar lipids, while a salt-free matrix solution was suitable for the detection of nonpolar lipids. Furthermore, potassium salts added to the matrix solution caused merging of various lipid adducts (adducts with proton, sodium, and potassium) into one single potassiated species. Using the optimized protocols, we selectively analyzed phosphatidylcholine (PC) and triacylglycerol (TG) with different fatty acid compositions in a rat kidney section. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Electroreduction of Oxygen by Cytochrome,c Oxidase Immobilized in Electrode-Supported Lipid Bilayer Membranes

CHEMISTRY & BIODIVERSITY, Issue 9 2004
Lianyong Su
Cytochrome c oxidase is the terminal enzyme in mammalian respiration, and one of its main functions is to catalyze the reduction of oxygen under physiological conditions. Direct reduction of oxygen at electrodes requires application of substantial overpotentials. In this work, bovine cytochrome c oxidase has been immobilized in electrode-supported lipid bilayer membranes to investigate the electroreduction of oxygen under flow conditions. The effect that temperature, solution pH, and solution composition have on the reduction of oxygen by this novel enzyme-modified electrode is reported. Results indicate that the electroreduction of oxygen is most pronounced at low pH (6.4) and elevated temperature (38°). At an applied potential of ,350,mV vs. Ag/AgCl (1M KCl), a current density of ca. 7,,A/cm2 was obtained. The current responses obtained at these electrodes are stable over a period of ca. 10,14 days (10,15% decrease in response). The cytochrome c oxidase-modified electrodes described here could potentially be used for the direct electroreduction of oxygen to water in a biofuel cell. [source]