Home About us Contact | |||
Soluble Ligands (soluble + ligand)
Selected AbstractsEffects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesionCYTOSKELETON, Issue 1 2005Tony Yeung Abstract The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an abrupt change in spread area that occurs at a stiffness range around 3,000 Pa. No actin stress fibers are seen in fibroblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete at a stiffness range coincident with that at which they spread. Upregulation of ,5 integrin also occurs in the same stiffness range, but exogenous expression of ,5 integrin is not sufficient to cause cell spreading on soft surfaces. Neutrophils, in contrast, show no dependence of either resting shape or ability to spread after activation when cultured on surfaces as soft as 2 Pa compared to glass. The shape and cytoskeletal differences evident in single cells on soft compared to hard substrates are eliminated when fibroblasts or endothelial cells make cell-cell contact. These results support the hypothesis that mechanical factors impact different cell types in fundamentally different ways, and can trigger specific changes similar to those stimulated by soluble ligands. Cell Motil. Cytoskeleton 60:24,34, 2005. © 2004 Wiley-Liss, Inc. [source] ,, T cell receptor repertoire in blood and colonic mucosa of rhesus macaquesJOURNAL OF MEDICAL PRIMATOLOGY, Issue 6 2000Eva Rakasz Although their precise roles are not well defined, ,, T lymphocytes are recognized as regular components of immune responses. These cells express a limited T cell receptor repertoire and they can be stimulated by soluble ligands without conventional processing and presentation by major histocompatibility antigens. Progress in this area has been limited by the substantial differences between murine and human ,, T cells and the lack of knowledge about these cells in nonhuman primates. We used molecular analysis of T cell receptor diversity to characterize ,, T cell populations from peripheral blood and colon of rhesus macaques (Macaca mulatta). The ,, T cell receptor diversity was limited and distinct for these tissue compartments, particularly in the TCRGV2 family. Furthermore, the TCRDV1+ subset of peripheral blood ,, T cells showed signs of progressive oligoclonalization as a function of age. Similar observations have been reported for human tissue samples and our results validate rhesus macaques as an appropriate animal model for studying primate ,, T cell populations. [source] IgG binding kinetics to oligo B protein A domains on lipid layers immobilized on a 27,MHz quartz-crystal microbalanceJOURNAL OF MOLECULAR RECOGNITION, Issue 2 2007Hideyuki Mitomo Abstract Although molecular recognitions between membrane receptors and their soluble ligands have been analyzed using their soluble proteins in bulk solutions, molecular recognitions of membrane receptors should be studied on lipid membranes considering their orientation and dynamics on membrane surfaces. We employed Staphylococcal Protein A (SpA) oligo B domains with long trialkyl-tags from E. coli (LppBx, x,=,1, 2, and 5) and immobilized LppBx on lipid layers using hydrophobic interactions from the trialkyl-tag, while maintaining the orientation of B domain-chains on a 27,MHz quartz-crystal microbalance (QCM; AT-cut shear mode). The binding of IgG Fc regions to LppBx on lipid layers was detected by frequency decreases (mass increases) on the QCM. The maximum amount bound (,mmax), association constants (Ka), association and dissociation rate constants (k1 and k,1, respectively) were obtained. Binding kinetics of IgG to LppB2 and LppB5 were quite similar, showing a simple 1:1 binding of the IgG Fc region to the B domain, when the surface coverage of LppB2 and LppB5 on the lipid surface is low (1.4%). When LppB5 was immobilized at the high surface coverage of 3.5%, the complex bindings of IgG such as one IgG bound to one or two LppB5 on the membrane could be observed. IgG-LppB1 binding was largely restricted because of steric hindrance on lipid surfaces. This gives a suggestion why Protein A has five IgG binding domains. Copyright © 2006 John Wiley & Sons, Ltd. [source] Platelet integrin ,IIb,3: activation mechanismsJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 7 2007Y.-Q. MA Summary., Integrin ,IIb,3 plays a critical role in platelet aggregation, a central response in hemostasis and thrombosis. This function of ,IIb,3 depends upon a transition from a resting to an activated state such that it acquires the capacity to bind soluble ligands. Diverse platelet agonists alter the cytoplasmic domain of ,IIb,3 and initiate a conformational change that traverses the transmembrane region and ultimately triggers rearrangements in the extracellular domain to permit ligand binding. The membrane-proximal regions of ,IIb and ,3 cytoplasmic tails, together with the transmembrane segments of the subunits, contact each other to form a complex which restrains the integrin in the resting state. It is unclasping of this complex that induces integrin activation. This clasping/unclasping process is influenced by multiple cytoplasmic tail binding partners. Among them, talin appears to be a critical trigger of ,IIb,3 activation, but other binding partners, which function as activators or suppressors, are likely to act as co-regulators of integrin activation. [source] Involvement of the ,3 E749ATSTFTN756 region in stabilizing integrin ,IIb,3 -ligand interactionJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2003P. E. M. H. Litjens Summary., Platelet integrin ,IIb,3 must be activated via intracellular mechanisms before it binds soluble ligands, and it is thought to be activated at its extracellular site by surface-bound ligands. Integrin activation is associated with rearrangement of the cytoskeleton and phosphorylation of proteins that become localized in focal contacts. In these processes, the cytoplasmic tail of the ,-subunit plays a central role. We introduced peptides homologous to the E749ATSTFTN756 domain (E,N peptide) and the T755NITYRGT762 domain (T,T peptide) of ,3 in streptolysin O-permeabilized platelets and analyzed the initial interaction with soluble fibronectin, fibrinogen and PAC-1 after stimulation with thrombin. E,N peptide left the initial binding of fibronectin intact but interfered with stable receptor occupancy. E,N peptide also inhibited fibrinogen binding, thereby reducing the formation of large aggregates. Strikingly, E,N peptide did not disturb the binding of PAC-1, which is known to reflect activation of the integrin. E,N peptide also inhibited tyrosine phosphorylation of focal adhesion kinase, a response known to be dependent on ,IIb,3. T,T peptide did not affect these processes. In a model for outside-in integrin activation, E,N peptide disrupted the binding of CHO cells expressing ,IIb,3 to surface-bound ligand. Again, T,T peptide had no effect. We conclude that the E749ATSTFTN756 region of the ,3 -tail stabilizes the binding of soluble and surface-bound ligand to integrin ,IIb,3 via a mechanism that involves the phosphorylation of FAK. [source] |