Solubility Data (solubility + data)

Distribution by Scientific Domains


Selected Abstracts


Solid,liquid equilibrium of substrates and products of the enzymatic synthesis of ampicillin

AICHE JOURNAL, Issue 6 2010
Mônica Santana
Abstract The solid,liquid equilibrium of precursors and products of the enzymatic synthesis of ampicillin (AMP) [6-aminopencillanic acid (6-APA) and D(,)phenylglycine (PG)] was investigated at different temperatures (283,298 K) and pHs (5.5,7.5). Solubility data were obtained using an analytical methodology. Equilibrium dissociation constants were experimentally measured at several temperatures for AMP, 6-APA, PG, and D(,)phenylglycine methyl ester. A model based on the simplified perturbed hard sphere theory proposed by Khoshkbarchi and Vera (Ind Eng Chem Res. 1996;35:4319-4327) was fitted against solubility data. The model could describe the water solubility behavior for AMP and PG as function of pH and temperature, but a bias was observed when fitting the model to the solubility of 6-APA. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Analysis of water solubility data on the basis of HYBOT descriptors

MOLECULAR INFORMATICS, Issue 9-10 2003
Part 2.
Abstract Solubility data of 787 organic liquids (electrolytes and non-electrolytes) with diverse structures has been quantitatively described by physicochemical property descriptors. Special effects like intra - and intermolecular hydrogen bonds have been shown to be very important for water solubility. It is found that an important part of the solute-solvent interaction is neglected in all correlations of logS with (only) logP, as in this case the solute H-bond donor effect is not considered. As expected intramolecular hydrogen bonds lead to reduced solubility, whereas intermolecular hydrogen bonds (both HB donors and acceptors) of solutes result in higher solubility. An exception to the latter rule are carboxylic acids which due to intermolecular HB-induced dimerization in the pure liquid phase of acids show a three times lower solubility as expected on the basis of their molecular properties. A volume-related term (molecular polarizability ,) was found to have an essential negative contribution to solubility. For the first time the solubility increasing effect of partial ionization of weak acids and bases in saturated aqueous solutions has been quantitatively considered for sets of compounds by exact calculation of the pH determined by the solutes aqueous solubility and pKa value(s). [source]


A novel equation of state (EOS) for prediction of solute solubility in supercritical carbon dioxide: Experimental determination and correlation

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009
Sh. Jafari Nejad
Abstract Solubility data of organophosphorous metal extractants in supercritical fluids (SCF) are crucial for designing metal extraction processes. We have developed a new equation of state (EOS) based on virial equation including an untypical parameter as BP/RT, reduced temperature and pressure for prediction of solute solubility in supercritical carbon dioxide (SC CO2). Solubility experimental data (solubility of tributylphosphate in SC CO2) were correlated with the two cubic equations of state (EOS) models, namely the Peng,Robinson EOS (PR-EOS) and the Soave,Redlich,Kwong EOS (SRK-EOS), together with two adjustable parameter van der Waals mixing and combining rules and our proposed EOS. The AARD of our EOS is significantly lower than that obtained from the other EOS models. The proposed EOS presented more accurate correlation for solubility data in SC CO2. It can be employed to speed up the process of SCF applications in industry. Les données de solubilité d'extractants de métaux organo-phosphorés dans des fluides supercritiques (FSC) sont cruciales pour concevoir des processus d'extraction des métaux. Nous avons développé une nouvelle équation d'état (ÉÉ) basée sur une équation d'état du viriel comprenant un paramètre atypique tel que la température et la pression réduite pour la prédiction de la solubilité du soluté dans du dioxyde de carbone supercritique. Les données expérimentales de solubilité (solubilité du phosphate de tributyle dans CO2 SC) ont été corrélées avec les deux modèles d'équations d'état cubiques, soit l'ÉÉ Peng,Robinson (ÉÉ-PR) et l'ÉÉ Soave,Redlich,Kwong (ÉÉ-SRK), avec deux paramètres ajustables, les règles de mélange et de combinaison van der Waals et notre ÉÉ proposée. L'AARD de notre ÉÉ est significativement plus faible que celui obtenu à partir des autres modèles d'ÉÉ. L'ÉÉ proposée présentait une corrélation plus exacte pour les données de solubilité dans le CO2 SC. Elle peut être employée pour accélérer les processus des applications de FSC dans l'industrie. [source]


Diffusion and Monod kinetics to determine in vivo human corneal oxygen-consumption rate during soft contact-lens wear

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2009
Mahendra Chhabra
Abstract The rate of oxygen consumption is an important parameter to assess the physiology of the human cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment. Therefore, estimation of in vivo corneal oxygen-consumption rate is essential for gauging adequate oxygen supply to the cornea. Phosphorescence quenching of a dye coated on the posterior of a soft contact lens provides a powerful technique to measure tear-film oxygen tension (Harvitt and Bonanno, Invest Ophthalmol Vis Sci 1996;37:1026,1036; Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371,376). Unfortunately, previous work in establishing oxygen-consumption kinetics from transient postlens tear-film oxygen tensions relies on the simplistic assumption of a constant corneal-consumption rate. A more realistic model of corneal metabolism is needed to obtain reliable oxygen-consumption kinetics. Here, physiologically relevant nonlinear Monod kinetics is adopted for describing the local oxygen-consumption rate, thus avoiding aphysical negative oxygen tensions in the cornea. We incorporate Monod kinetics in an unsteady-state reactive-diffusion model for the cornea contact-lens system to determine tear-film oxygen tension as a function of time when changing from closed-eye to open-eye condition. The model was fit to available experimental data of in vivo human postlens tear-film oxygen tension to determine the corneal oxygen-consumption rate. Reliance on corneal oxygen diffusivity and solubility data obtained from rabbits is no longer requisite. Excellent agreement is obtained between the proposed model and experiment. We calculate the spatial-averaged in vivo human maximum corneal oxygen-consumption rate as Q = 1.05 × 10,4 mL/(cm3 s). The calculated Monod constant is Km = 2.2 mmHg. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009 [source]


Solid,liquid equilibrium of substrates and products of the enzymatic synthesis of ampicillin

AICHE JOURNAL, Issue 6 2010
Mônica Santana
Abstract The solid,liquid equilibrium of precursors and products of the enzymatic synthesis of ampicillin (AMP) [6-aminopencillanic acid (6-APA) and D(,)phenylglycine (PG)] was investigated at different temperatures (283,298 K) and pHs (5.5,7.5). Solubility data were obtained using an analytical methodology. Equilibrium dissociation constants were experimentally measured at several temperatures for AMP, 6-APA, PG, and D(,)phenylglycine methyl ester. A model based on the simplified perturbed hard sphere theory proposed by Khoshkbarchi and Vera (Ind Eng Chem Res. 1996;35:4319-4327) was fitted against solubility data. The model could describe the water solubility behavior for AMP and PG as function of pH and temperature, but a bias was observed when fitting the model to the solubility of 6-APA. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Simulation modelling of human intestinal absorption using Caco-2 permeability and kinetic solubility data for early drug discovery

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2008
Simon Thomas
Abstract Measurement of permeation across a monolayer of the human adenocarcinoma cell line, Caco-2, is a popular surrogate for a compound's permeation across the human intestinal epithelium. Taken alone, however, Caco-2 permeability has certain limitations in the prediction of the extent of absorption of an orally-administered compound, because it does not take into account confounding factors such as solubility and dissolution in the gastrointestinal (GI) tract fluids. A simulation model is described that uses Caco-2 permeability measured in the apical to basolateral direction plus kinetic solubility in buffered solution (both measured at pH 7.4) to predict human intestinal absorption. The model features novel treatment of time-varying fluid volume in the GI tract, as a consequence of secretions into, and absorption of fluid from, the upper part of the GI tract. The model has been trained and cross-validated with data for 120 combinations of compound and dose. It has superior predictive power to recently published simulation and quantitative structure property relationship models, and is suitable for high-throughput screening during lead identification and lead optimisation in drug discovery. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4557,4574, 2008 [source]


Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2005
A. Glomme
Abstract Solubility is one of the most important parameters for lead selection and optimization during drug discovery. Its determination should therefore take place as early as possible in the process. Because of the large numbers of compounds involved and the very low amounts of each compound available in the early development stage, it is highly desirable to measure the solubility with as little compound as possible and to be able to improve the throughput of the methods used. In this work, a miniaturized shake-flask method was developed and the solubility results were compared with those measured by semiautomated potentiometric acid/base titrations and computational methods for 21 poorly soluble compounds with solubilities mostly in the range 0.03,30 ,g/mL. The potentiometric method is very economical (approximately 100 ,g of a poorly soluble compound is needed) and is able to create a pH/solubility profile with one single determination, but is limited to ionizable compounds. The miniaturized shake-flask method can be used for all compounds and a wide variety of media. Its precision and throughput proved superior to the potentiometric method for very poorly soluble compounds. Up to 20 compounds a week can be studied with one set-up. Calculated solubility data seem to be sufficient for a first estimate of the solubility, but they cannot currently be used as a substitute for experimental measurements at key decision points in the development process. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:1,16, 2005 [source]


Using the polymer partitioning method to probe the thermodynamic activity of poorly water-soluble drugs solubilized in model lipid digestion products

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2003
Ben J. Boyd
Abstract The thermodynamic activity of solubilized drug is an important determinant of the extent of absorption of lipophilic drugs from the gastrointestinal tract. In this study, the polymer partitioning method was evaluated for its use in the determination of the thermodynamic activity of lipophilic drugs when solubilized in colloidal digestion products, using drug in dilute solution as a reference ideal solution. The lipophilic drugs griseofulvin, diazepam, and danazol partitioned into a polymeric receiver phase from non-micellar solution as a function of drug lipophilicity. The concentration of drug that partitioned into the polymer was linearly proportional to the concentration of free drug in solution, and this allowed the measured partition coefficient to be utilized as an indicator of the drug activity coefficient. The addition of a solubilizing species such as bile salt micelles caused a reduction in drug activity of a similar magnitude to that predicted from micelle equilibrium solubility data in the identical micellar solutions. The addition of micelle swelling lipids such as lecithin and fatty acids resulted in further reductions in activity coefficient. The ability to measure drug activity in model digestive systems has potential for application in the rational development of improved lipid-based formulations of poorly water-soluble drugs for oral administration. © 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:1262,1271, 2003 [source]


Predicting solubility in multiple nonpolar drugs,cyclodextrin system

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2002
Luwei Zhao
Abstract This study presents a model to predict the solubility of a nonpolar drug DA in the presence of other nonpolar drugs D1,Dn in a complexing ligand L system such as hydroxypropyl-,-cyclodextrin (HP,CD). Using an equilibrium approach, the model describes the molecular interactions among these drug species and the ligand. The model indicates that the solubility of DA invariably decreases as a result of the presence of D1,Dn. Furthermore, the decrease in DA solubility is related to the sum of the products of the intrinsic solubilities of the other drugs and drug,ligand complexation constants. To test the model, three steroids (prednisolone, 17,-hydroxyprogesterone, and progesterone) were used as model compounds in HP,CD solutions. The experimental data showed that the solubility of any particular drug decreased in the presence of other drugs. At all tested HP,CD concentrations, these experimental solubility data were in good agreement with the predicted solubility data. This result lends strong support to the reliability and effectiveness of the proposed model. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2301,2306, 2002 [source]


Influences of alkyl group chain length and polar head group on chemical skin permeation enhancement

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2001
Kevin S. Warner
Abstract Previous investigations in our laboratory on the influence of the n -alkanols and the 1-alkyl-2-pyrrolidones as skin permeation enhancers for steroid molecules as permeants demonstrated that the enhancer potencies (based on aqueous concentration values) of these two homologous series were the same when compared at the same alkyl chain length; that is, the contribution of the hydroxyl group and that of the pyrrolidone group to enhancer potency were the same. The purpose of the present study was to further investigate what was believed to be a somewhat surprising finding, and two additional homologous series, the 1,2-alkanediols and N,N -dimethylalkanamides, were selected for study as enhancers. Corticosterone (CS) flux enhancement along the lipoidal pathway of hairless mouse skin stratum corneum was determined with 1,2-hexane-, 1,2-octane-, and 1,2-decanediol and with N,N -dimethylhexanamide, N,N - dimethylheptanamide, N,N -dimethyloctanamide, and N,N -dimethylnonanamide as enhancers. The enhancement factor (E) for the lipoidal pathway was calculated from the CS permeability coefficient and the CS solubility data over a 4 to 100 range of E values. Comparisons of the enhancer potencies of all four homologous series revealed that the enhancer potencies of all were very nearly the same when compared at equal alkyl group chain length. Moreover, the contribution of each of the polar head groups toward the enhancer potency was essentially constant, independent of the alkyl group chain length. It was reasoned that this outcome was either the result of the random selection of four polar head groups making the same contribution to enhancer potency or the result of these particular polar head groups not contributing to enhancer potency. To test the hypothesis that the former was more likely than the latter and that a suitable semipolar organic phase may mimic the microenvironment of the polar head group at the site of enhancer action, n -octanol,phosphate buffered saline (PBS) and n -hexane,PBS partition coefficients were determined for all the enhancers. The n -octanol,PBS partition coefficients for the enhancers, but not the n -hexane,PBS partition coefficients, were very nearly the same when compared at equal alkyl group chain lengths; this result supports the hypothesis that each of the four polar head groups likely contributes the same toward the enhancer potency and locates in the semipolar region of the hairless mouse skin stratum corneum lipid bilayers, which is well-approximated by water-saturated n -octanol. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1143,1153, 2001 [source]


Thermochemistry and Aqueous Durability of Ternary Glass Forming Ba-Titanosilicates: Fresnoite (Ba2TiSi2O8) and Ba-Titanite (BaTiSiO5)

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2009
Tae-Jin Park
Barium titanosilicates are possible oxide forms for the immobilization of short-lived fission products in radioactive waste. Ba2TiSi2O8 (fresnoite) and BaTiSiO5 (Ba-titanite) samples were prepared by a solid-state synthesis. The enthalpies of formation of Ba2TiSi2O8 crystal and glass at 25°C and of BaTiSiO5 glass were obtained from drop solution calorimetry in a molten lead borate (2PbO,B2O3) solvent at 701°C. The enthalpy of formation for fresnoite composition samples from constituent oxides was exothermic and became more exothermic with increasing crystallinity. Differential scanning calorimetry revealed that the crystallization rate of the fresnoite glasses increased with increasing devitrification. A modified Product Consistency Test-Procedure B (PCT-B) was used to collect solubility data on the fresnoite and titanate phases. The tests suggest that both glassy and crystalline fresnoite exhibit favorable aqueous stability and should be explored further as radioactive waste forms for long-term storage. [source]


Atom-Transfer Radical Batch and Semibatch Polymerization of Styrene

MACROMOLECULAR REACTION ENGINEERING, Issue 4 2007
Yao Fu
Abstract Batch and semibatch styrene polymerizations are carried out using a heterogeneous ATRP catalyst system that provides excellent molecular-weight control. The observed initiator efficiency is lower for semibatch operation due to the high initiator concentrations required to make a low-MW polymer. Experiments verified that the insoluble metal complex does not participate in the polymerization and that Cu(I) solubility is an order of magnitude higher than that of Cu(II). A mechanistic model, using kinetic coefficients from literature and the solubility data from this study, provides a good representation of the experimental results. [source]


Analysis of water solubility data on the basis of HYBOT descriptors.

MOLECULAR INFORMATICS, Issue 9-10 2003
Part 1.
Abstract This work describes the analysis of water-gas phase partitioning data Lw=Cw/Cg for 559 organic chemicals on the basis of physicochemical descriptors calculated by the HYBOT program package. Physicochemical descriptors combined with indicator variables as well as a new approach combining traditional QSAR and molecular similarity are used to take structural features into account. The H-bond acceptor ability of chemicals (i.e. interaction of acceptor atoms with hydrogen atoms of water) is the main factor that influences the partitioning of vapors into water. The simultaneous consideration of H-bond acceptor and donor factors leads to a description of the solubility of vapors with a correlation coefficient of about 0.92. The influence of steric interactions of solutes (characterized by means of molecular polarizability) with water molecules contributes slightly but significantly from the statistics point of view. The use of a set of indicator variables for hydrocarbons and for molecules containing amino, amido, CX3, ether and nitro groups as well as for molecules with ability to form intramolecular hydrogen bonds improves the correlation and helps to take structural features into account. Furthermore, the application of an approach based on the calculation of additional contributions to solubility by considering ,nearest neighbor chemicals' and their difference in physicochemical parameters gives in many cases good results and could be very useful in the analysis of vast data sets. [source]


Analysis of water solubility data on the basis of HYBOT descriptors

MOLECULAR INFORMATICS, Issue 9-10 2003
Part 2.
Abstract Solubility data of 787 organic liquids (electrolytes and non-electrolytes) with diverse structures has been quantitatively described by physicochemical property descriptors. Special effects like intra - and intermolecular hydrogen bonds have been shown to be very important for water solubility. It is found that an important part of the solute-solvent interaction is neglected in all correlations of logS with (only) logP, as in this case the solute H-bond donor effect is not considered. As expected intramolecular hydrogen bonds lead to reduced solubility, whereas intermolecular hydrogen bonds (both HB donors and acceptors) of solutes result in higher solubility. An exception to the latter rule are carboxylic acids which due to intermolecular HB-induced dimerization in the pure liquid phase of acids show a three times lower solubility as expected on the basis of their molecular properties. A volume-related term (molecular polarizability ,) was found to have an essential negative contribution to solubility. For the first time the solubility increasing effect of partial ionization of weak acids and bases in saturated aqueous solutions has been quantitatively considered for sets of compounds by exact calculation of the pH determined by the solutes aqueous solubility and pKa value(s). [source]


Measurement and prediction of LDPE/CO2 solution viscosity

POLYMER ENGINEERING & SCIENCE, Issue 11 2002
Surat Areerat
When CO2 is dissolved into a polymer, the viscosity of the polymer is drastically reduced. In this paper, the melt viscosities of low-density polyethylene (LDPE)/supercritical CO2 solutions were measured with a capillary rheometer equipped at a foaming extruder, where CO2 was injected into a middle of its barrel and dissolved into the molten LDPE. The viscosity measurements were performed by varying the content of CO2 in the range of 0 to 5.0 wt% and temperature in the range of 150°C to 175°C, while monitoring the dissolved CO2 concentration on-line by Near Infrared spectroscopy. Pressures in the capillary tube were maintained higher than an equilibrium saturation pressure so as to prevent foaming in the tube and to realize single-phase polymer/CO2 solutions. By measuring the pressure drop and flow rate of polymer running through the tube, the melt viscosities were calculated. The experimental results indicated that the viscosity of LDPE/CO2 solution was reduced to 30% of the neat polymer by dissolving CO2 up to 5.0 wt% at temperature 150°C. A mathematical model was proposed to predict viscosity reduction owing to CO2 dissolution. The model was developed by combining the Cross-Carreau model with Doolittle's equation in terms of the free volume concept. With the Sanchez-Lacombe equation of state and the solubility data measured by a magnetic suspension balance, the free volume fractions of LDPE/CO2 solutions were calculated to accommodate the effects of temperature, pressure and CO2 content. The developed model can successfully predict the viscosity of LDPE/CO2 solutions from PVT data of the neat polymer and CO2 solubility data. [source]


A novel equation of state (EOS) for prediction of solute solubility in supercritical carbon dioxide: Experimental determination and correlation

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009
Sh. Jafari Nejad
Abstract Solubility data of organophosphorous metal extractants in supercritical fluids (SCF) are crucial for designing metal extraction processes. We have developed a new equation of state (EOS) based on virial equation including an untypical parameter as BP/RT, reduced temperature and pressure for prediction of solute solubility in supercritical carbon dioxide (SC CO2). Solubility experimental data (solubility of tributylphosphate in SC CO2) were correlated with the two cubic equations of state (EOS) models, namely the Peng,Robinson EOS (PR-EOS) and the Soave,Redlich,Kwong EOS (SRK-EOS), together with two adjustable parameter van der Waals mixing and combining rules and our proposed EOS. The AARD of our EOS is significantly lower than that obtained from the other EOS models. The proposed EOS presented more accurate correlation for solubility data in SC CO2. It can be employed to speed up the process of SCF applications in industry. Les données de solubilité d'extractants de métaux organo-phosphorés dans des fluides supercritiques (FSC) sont cruciales pour concevoir des processus d'extraction des métaux. Nous avons développé une nouvelle équation d'état (ÉÉ) basée sur une équation d'état du viriel comprenant un paramètre atypique tel que la température et la pression réduite pour la prédiction de la solubilité du soluté dans du dioxyde de carbone supercritique. Les données expérimentales de solubilité (solubilité du phosphate de tributyle dans CO2 SC) ont été corrélées avec les deux modèles d'équations d'état cubiques, soit l'ÉÉ Peng,Robinson (ÉÉ-PR) et l'ÉÉ Soave,Redlich,Kwong (ÉÉ-SRK), avec deux paramètres ajustables, les règles de mélange et de combinaison van der Waals et notre ÉÉ proposée. L'AARD de notre ÉÉ est significativement plus faible que celui obtenu à partir des autres modèles d'ÉÉ. L'ÉÉ proposée présentait une corrélation plus exacte pour les données de solubilité dans le CO2 SC. Elle peut être employée pour accélérer les processus des applications de FSC dans l'industrie. [source]


Two polymorphs of lysozyme nitrate: temperature dependence of their solubility

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10-1 2002
L. Legrand
Two crystallographic forms of lysozyme nitrate are known, namely monoclinic and triclinic. Having previously determined the temperature dependence of the solubility of the monoclinic form (0.2 M NaNO3 solutions at pH = 4.5) [Legrand et al. (2001). J. Crystal Growth232, 244-249], we focus here on the solubility of the triclinic form. The temperature dependence of the solubility of this crystallographic form has been measured with a static light device developed in our laboratory. This device allows to observe of the dissolution of one phase and/or the occurrence of a new one by varying the temperature with a sweep rate as low as 0.6 degree/hour. The new solubility data are complemented with crystallographic data of the triclinic form for the sake of completeness. The faces of a triclinic crystal are indexed. The crystallisation enthalpy of the triclinic form is deduced from these new results. These new solubility data allow us now to discuss (1) the publishedprotocols used to obtain the monoclinic and triclinic forms of lysozyme nitrate and (2) the phase transformation. [source]


Application of the Ion-interaction Model to the Solubility Prediction of LiCl-HCl-MgCl2 -H2O System at 20 °C

CHINESE JOURNAL OF CHEMISTRY, Issue 8 2005
Li Ya-Hong
Abstract Component solubility in HCl-LiCl-MgCl2 -H2O system of high ionic strength at 20 °C was predicted by using the Pitzer's ion-interaction model. The results indicated that the model supplied a very good prediction of the component solubility of the system mentioned above. The values of parameters of ,0, ,1 and C, of HCl, LiCl and MgCl2 were obtained from optimization of literature data, while those of ,MN and ,MNX were calculated from a least-squares optimization procedure to couple activity coefficient with solubility data. According to the ion-interaction model, no additional parameters need to be determined for more complex systems. The study provided theoretical basis for the manufacture process, which was proposed by Gao and employed to extract LiCl and MgCl2·6H2O from salt lake brine. [source]