Home About us Contact | |||
Solid Wall (solid + wall)
Selected AbstractsOn the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment,INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2010I. Kalashnikova Abstract A reduced order model (ROM) based on the proper orthogonal decomposition (POD)/Galerkin projection method is proposed as an alternative discretization of the linearized compressible Euler equations. It is shown that the numerical stability of the ROM is intimately tied to the choice of inner product used to define the Galerkin projection. For the linearized compressible Euler equations, a symmetry transformation motivates the construction of a weighted L2 inner product that guarantees certain stability bounds satisfied by the ROM. Sufficient conditions for well-posedness and stability of the present Galerkin projection method applied to a general linear hyperbolic initial boundary value problem (IBVP) are stated and proven. Well-posed and stable far-field and solid wall boundary conditions are formulated for the linearized compressible Euler ROM using these more general results. A convergence analysis employing a stable penalty-like formulation of the boundary conditions reveals that the ROM solution converges to the exact solution with refinement of both the numerical solution used to generate the ROM and of the POD basis. An a priori error estimate for the computed ROM solution is derived, and examined using a numerical test case. Published in 2010 by John Wiley & Sons, Ltd. [source] Numerical approximation of the heat transfer between domains separated by thin wallsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2006Ramon Codina Abstract In this paper, we analyse the numerical approximation of the heat transfer problem between two subdomains that we will consider filled with a fluid and separated by a thin solid wall. First of all, we state the problem in the whole domain with discontinuous physical properties. As an alternative and under certain assumptions on the separating walls, a classical Robin boundary condition between the fluid domains is obtained, thus eliminating the solid wall, and according to which the heat flux is proportional to the temperature difference between the two subdomains. Apart from discussing the relation between both approaches, we consider their numerical approximation, considering different alternatives for the first case, that is, the case in which temperatures are also computed in the solid wall. Copyright © 2006 John Wiley & Sons, Ltd. [source] Internal wave computations using the ghost fluid method on unstructured gridsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2005Sangmook Shin Abstract Two-layer incompressible flows are analysed using the ghost fluid method on unstructured grids. Discontinuities in dynamic pressure along interfaces are captured in one cell without oscillations. Because of data reconstructions based on gradients, the ghost fluid method can be adopted without additional storages for the ghost nodes at the expense of modification in gradient calculations due to the discontinuity. The code is validated through comparisons with experimental and other numerical results. Good agreements are achieved for internal waves generated by a body moving at transcritical speeds including a case where upstream solitary internal waves propagate. The developed code is applied to analyse internal waves generated by a NACA0012 section moving near interfaces. Variations of the lift acting on the body and configurations of the interfaces are compared for various distances between the wing and the interface. The effects of the interface are compared with the effects of a solid wall. Copyright © 2004 John Wiley & Sons, Ltd. [source] Methane steam reforming at microscales: Operation strategies for variable power output at millisecond contact timesAICHE JOURNAL, Issue 1 2009Georgios D. Stefanidis Abstract The potential of methane steam reforming at microscale is theoretically explored. To this end, a multifunctional catalytic plate microreactor, comprising of a propane combustion channel and a methane steam reforming channel, separated by a solid wall, is simulated with a pseudo 2-D (two-dimensional) reactor model. Newly developed lumped kinetic rate expressions for both processes, obtained from a posteriori reduction of detailed microkinetic models, are used. It is shown that the steam reforming at millisecond contact times is feasible at microscale, and in agreement with a recent experimental report. Furthermore, the attainable operating regions delimited from the materials stability limit, the breakthrough limit, and the maximum power output limit are mapped out. A simple operation strategy is presented for obtaining variable power output along the breakthrough line (a nearly iso-flow rate ratio line), while ensuring good overlap of reaction zones, and provide guidelines for reactor sizing. Finally, it is shown that the choice of the wall material depends on the targeted operating regime. Low-conductivity materials increase the methane conversion and power output at the expense of higher wall temperatures and steeper temperature gradients along the wall. For operation close to the breakthrough limit, intermediate conductivity materials, such as stainless steel, offer a good compromise between methane conversion and wall temperature. Even without recuperative heat exchange, the thermal efficiency of the multifunctional device and the reformer approaches ,65% and ,85%, respectively. © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source] Equivalence between substrate-integrated (SIRW) rectangular waveguide short-circuit load and its equivalent rectangular waveguide short-circuit loadMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 9 2006Wenquan Che Abstract Substrate integrated rectangular waveguide (SIRW) is an artificial rectangular waveguide (RW) constructed in planar substrate with two rows of periodic metallized posts or slots. In this letter, the equivalence formula between the locations of the corresponding short circuits by cylinder walls and by the solid wall was derived, based on the former width equivalence formula of the SIRW and its equivalent RW [(11)]]. The theoretical and simulation results are given for the SIRW short load and RW short load, good agreements have been observed. Such equivalences are convenient for the design of small waveguides, of millimeter wave, in a multilayer circuit structure, such as the LTCC etc. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 1694,1698, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21805 [source] Do cities export biodiversity?DIVERSITY AND DISTRIBUTIONS, Issue 1 2008Traffic as dispersal vector across urban, rural gradients ABSTRACT Urban areas are among the land use types with the highes richness in plant species. A main feature of urban floras is the high proportion of non-native species with often divergent distribution patterns along urban,rural gradients. Urban impacts on plant species richness are usually associated with increasing human activity along rural-to-urban gradients. As an important stimulus of urban plant diversity, human-mediated seed dispersal may drive the process of increasing the similarity between urban and rural floras by moving species across urban,rural gradients. We used long motorway tunnels as sampling sites for propagules that are released by vehicles to test for the impact of traffic on seed dispersal along an urban,rural gradient. Opposite lanes of the tunnels are separated by solid walls, allowing us to differentiate seed deposition associated with traffic into vs. out of the city. Both the magnitude of seed deposition and the species richness in seed samples from two motorway tunnels were higher in lanes leading out of the city, indicating an ,export' of urban biodiversity by traffic. As proportions of seeds of non-native species were also higher in the outbound lanes, traffic may foster invasion processes starting from cities to the surrounding landscapes. Indicator species analysis revealed that only a few species were confined to samples from lanes leading into the city, while mostly species of urban habitats were significantly associated with samples from the outbound lanes. The findings demonstrate that dispersal by traffic reflects different seed sources that are associated with different traffic directions, and traffic may thus exchange propagules along the urban,rural gradient. [source] Fabrication of Fe,Cr,Al Oxide Dispersion Strengthened PM2000 Alloy Using Selective Laser Melting,ADVANCED ENGINEERING MATERIALS, Issue 7 2009John C. Walker Rapid prototyping using the selective laser melting process has been successfully used in the manufacture of solid walls from melt sensitive mechanically alloyed PM2000 FeCrAl ODS powder. Despite melting of the powder, the technique allowed the retention of the nanoscale oxide dispersion due to the high cooling rates. Results showed that coarsening and agglomeration of ODS particles was more dependent on laser scan speed than the maximum laser power. [source] Analysis of the near-wall behaviour of some self-adaptive subgrid-scale models in finite-differenced simulations of channel flowINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10 2002P. Sagaut Abstract Self-adaptive subgrid-scale models are proposed and assessed. They are based on the use of the Germano,Lilly dynamic procedure and the use of a selection function. These models, which do not incorporate any information related to the location of the solid walls, are well suited for the simulation of turbulent flows in complex geometries. Their reliability, when used together with a second-order non-dissipative numerical method, is assessed on the plane channel configuration for two values of the Reynolds number (Re, = 180 and 395) for two grid resolutions. The selection function approach for deriving self-adaptive subgrid models is found to yield results very similar to those obtained using a dynamic model, without requiring any numerical stabilization procedure. The use of the selection function is shown to be the only one which is able to capture the backscatter process in the buffer layer, while producing a strictly positive subgrid viscosity. This is demonstrated to be linked to the capability of the selection function to permit a decorrelation between the mean strain and the fluctuations of the subgrid stresses. That point is illustrated thanks to the introduction of a new decomposition of the fluctuating strain subgrid dissipation. Copyright © 2002 John Wiley & Sons, Ltd. [source] Advanced models for erosion corrosion and its mitigation,MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 2 2008G. Schmitt Erosion corrosion, i.e., flow-induced localized corrosion (FILC) is initiated when flow dynamic forces surpass the fracture energy of protective layers or scales on metals. With a new model the maximum interaction energies between flowing media and solid walls can be quantified in terms of "freak" energy densities created during singular events (freak events) of perpendicular impacts by near-wall microturbulence elements. The freak energy densities are in the megaPascal range and match well in the order of magnitude with fracture energies of protective layers and can be estimated from Wavelet diagnostics of electrochemical current noise measured at microelectrodes under mass transport controlled conditions. This solves the problem that wall shear stresses, generally used to quantify critical flow intensities for FILC initiation, range several orders of magnitude (Pa range) below the fracture energies of protective layers. The new advanced model allows for the first time to quantify the maximum fluid dynamic forces exerted on solid walls under different turbulent and disturbed flow conditions (one-phase liquid flow on jet impinged surfaces and on coupons in rotated cages, surfaces impacted by slug flow and gas-pulsed impinging jets). Drag reducing additives were shown to reduce freak energy densities to values significantly below fracture energies of protective layers and hence inhibit initiation of FILC. The onset of FILC can be monitored online with the newly developed CoulCount method, an easy-to-use, non-invasive diagnostic tool which evaluates electrochemical current noise between jet impinged electrode pairs made from the metals to be tested. [source] |