Home About us Contact | |||
Solid Poly (solid + poly)
Selected AbstractsRegioselective Synthesis of Phenols and Halophenols from Arylboronic Acids Using Solid Poly(N -vinylpyrrolidone)/ Hydrogen Peroxide and Poly(4-vinylpyridine)/Hydrogen Peroxide ComplexesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2009K. Surya Prakash Abstract Solid hydrogen peroxide complexes based on poly(N -vinylpyrrolidone) and poly(4-vinylpyridine) were prepared and used as solid hydroxylating reagents. These solid hydrogen peroxide equivalents are found to be much safer, convenient and efficient reagent systems for the ipso -hydroxylation of arylboronic acids to the corresponding phenols in high yields at a faster rate. The versatility of the reagents has been further expanded for the one-pot synthesis of halophenols. Density functional theory calculations were carried out on hydrogen peroxide complexes of N -ethylpyrrolidone and 4-ethylpyridine as models to get a better understanding of structure and behavior of hydrogen peroxide complexes of the polymers poly(N -vinylpyrrolidone) and poly(4-vinylpyridine) compared to aqueous hydrogen peroxide. [source] ChemInform Abstract: Regioselective Synthesis of Phenols and Halophenols from Arylboronic Acids Using Solid Poly(N-vinylpyrrolidone)/Hydrogen Peroxide and Poly(4-vinylpyridine)/Hydrogen Peroxide Complexes.CHEMINFORM, Issue 49 2009G. K. Surya Prakash Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Structural Changes in the BODIPY Dye PM567 Enhancing the Laser Action in Liquid and Solid Media,ADVANCED FUNCTIONAL MATERIALS, Issue 16 2007I. García-Moreno Abstract In the search for more efficient and photostable solid-state dye lasers, newly synthesized analogs of the borondipyrromethene (BODIPY) dye PM567, bearing the polymerizable methacryloyloxypropyl group at position 2 (PMoMA) or at positions 2 and 6 (PDiMA), have been studied in the form of solid copolymers with methyl methacrylate (MMA). The parent dye PM567, as well as the model analogs bearing the acetoxypropyl group in the same positions, PMoAc and PDiAc, respectively, have been also studied both in liquid solvents and in solid poly(MMA) (PMMA) solution. Although in liquid solution PMoAc and PDiAc have the same photophysical properties as PM567, PDiAc exhibited a photostability up to 10 times higher than that of PM567 in ethanol under 310,nm-irradiation. The possible stabilization factors of PDiAc have been analyzed and discussed on the basis of the redox potentials, the ability for singlet molecular oxygen [O2(1,g)] generation, the reactivity with O2(1,g), and quantum mechanical calculations. Both PMoAc and PDiAc, pumped transversally at 532,nm, lased in liquid solution with a high (up to 58,%), near solvent-independent efficiency. This enhanced photostabilization has been also observed in solid polymeric and copolymeric media. While the solid solution of the model dye PDiAc in PMMA showed a lasing efficiency of 33,%, with a decrease in the laser output of ca.,50,% after 60,000 pump pulses (10,Hz repetition rate) in the same position of the sample, the solid copolymer with the double bonded chromophore, COP(PDiMA-MMA), showed lasing efficiencies of up to 37,%, and no sign of degradation in the laser output after 100,000 similar pump pulses. Even under the more demanding repetition rate of 30,Hz, the laser emission from this material remained at 67,% of its initial laser output after 400,000 pump pulses, which is the highest laser photostability achieved to date for solid-state lasers based on organic polymeric materials doped with laser dyes. This result indicates that the double covalent linkage of the BODIPY chromophore to a PMMA polymeric matrix is even more efficient than the simple linkage, for its photostabilization under laser operation. [source] Effect of pressure on the luminescence of a series of methoxy phenylacetylene dendrimers neat and in dilute solution in solid poly(tert -butyl methacrylate)JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2001A. Zhu Abstract The effect of pressure up to 60 kbar was measured on the luminescence peak location and efficiency for a series of methoxy phenylacetylene dendrimers (MeO). Dendrimers MeO-3, MeO-7, MeO-15, MeO-31, MeO-63, and MeO-127 were studied as neat polymers. MeO-3, MeO-15, MeO-63, and MeO-127 were also investigated in dilute solutions in poly(tert -butyl methacrylate). According to measurements of the dilute solutions, there is a charge-transfer (CT) state that, for the smaller dendrimers, lies well above the ,* state; for the larger dendrimers, it is the emitting state at 1 atm. With increasing pressure, the intramolecular CT state is rapidly stabilized, so that at high pressure the emission is from this state for all dendrimers. For the neat polymers, there is an initial redshift that reverses direction at a pressure that is higher for smaller dendrimers. This reversal is attributed to intermolecular CT. There may be changes in the molecular geometry and/or relative orientation of adjacent dendrimers that tend to stabilize the intermolecular CT in the solid state. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2859,2865, 2001 [source] |