Solid Matrix (solid + matrix)

Distribution by Scientific Domains


Selected Abstracts


Properties of Poly(sodium 4-styrenesulfonate)-Ionic Liquid Composite Film and Its Application in the Determination of Trace Metals Combined with Bismuth Film Electrode

ELECTROANALYSIS, Issue 5 2008
Jianbo Jia
Abstract A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64,/Fe(CN)63, can be effectively improved at the PSS-BMIMPF6 modified GC. The bismuth modified PSS-BMIMPF6 composite film electrodes (GC/PSS-BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS-BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50,,g L,1. And the detection limits were 0.07,,g L,1 for Cd(II) and 0.09,,g L,1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120,s, respectively. Finally, the GC/PSS-BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy. [source]


Effect of earthworm activity (Aporrectodea giardi) on atrazine adsorption and biodegradation

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2006
T. Alekseeva
Summary We investigated the influence of earthworm (Aporrectodea giardi) activity on soil properties and on atrazine (AT) adsorption and biodegradation by comparing a coarse-textured smectite-free wetland soil (Brittany, France) with the earthworm casts derived from the top horizon of this soil. Casts are characterized by lower pH, are enriched in organic carbon (OC) and clay content, have a larger cation exchange capacity, and a greater exchangeable Ca content. The clay mineralogy of the soil studied and casts is characterized by a muscovite,kaolinite,chlorite association. In addition, the clay fraction of the soil contains lepidocrocite (,-FeOOH), which was not found in the casts. Atrazine adsorption isotherms were reasonably well described by the Freundlich equation and were all non-linear. The mean amounts of adsorbed AT for starting concentrations of 3,30 mg litre,1 ranged from 8 to 34%, being largest in earthworm casts. Soil AT adsorption capacity was well correlated with OC content. Non-decomposed organic matter present in the coarse size fractions and specific compounds present in earthworm casts (proteins, mono- and polysaccharides, polyphenols, sugars, lignin) and microbial and fungal biomass contribute to AT adsorption. Weak electrostatic (physical) sorption of AT on organic compounds and on mineral surfaces prevails. For casts, the formation of additional hydrophobic interactions between AT and SOM is proposed. We also studied AT biodegradation by the model bacterium Pseudomonas sp. strain ADP in the presence of soils or earthworm casts. An enhancement of the AT disappearance rate was observed in the presence of all the solid matrices tested compared with that obtained in an aqueous medium. The biodegradation rate was shown to be dependent not only on the OC content of the solid matrix, but mainly on its composition and structure. [source]


Porous Structures: In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010
Mater.
Abstract Synthetic biodegradable polymers serve as temporary substrates that accommodate cell infiltration and tissue in-growth in regenerative medicine. To allow tissue in-growth and nutrient transport, traditional three-dimensional (3D) scaffolds must be prefabricated with an interconnected porous structure. Here we demonstrated for the first time a unique polymer erosion process through which polymer matrices evolve from a solid coherent film to an assemblage of microspheres with an interconnected 3D porous structure. This polymer system was developed on the highly versatile platform of polyphosphazene-polyester blends. Co-substituting a polyphosphazene backbone with both hydrophilic glycylglycine dipeptide and hydrophobic 4-phenylphenoxy group generated a polymer with strong hydrogen bonding capacity. Rapid hydrolysis of the polyester component permitted the formation of 3D void space filled with self-assembled polyphosphazene spheres. Characterization of such self-assembled porous structures revealed macropores (10,100 ,m) between spheres as well as micro- and nanopores on the sphere surface. A similar degradation pattern was confirmed in vivo using a rat subcutaneous implantation model. 12 weeks of implantation resulted in an interconnected porous structure with 82,87% porosity. Cell infiltration and collagen tissue in-growth between microspheres observed by histology confirmed the formation of an in situ 3D interconnected porous structure. It was determined that the in situ porous structure resulted from unique hydrogen bonding in the blend promoting a three-stage degradation mechanism. The robust tissue in-growth of this dynamic pore forming scaffold attests to the utility of this system as a new strategy in regenerative medicine for developing solid matrices that balance degradation with tissue formation. [source]


In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010
Meng Deng
Abstract Synthetic biodegradable polymers serve as temporary substrates that accommodate cell infiltration and tissue in-growth in regenerative medicine. To allow tissue in-growth and nutrient transport, traditional three-dimensional (3D) scaffolds must be prefabricated with an interconnected porous structure. Here a unique polymer erosion process through which polymer matrices evolve from a solid coherent film to an assemblage of microspheres with an interconnected 3D porous structure is demonstrated for the first time. This polymer system is developed on the highly versatile platform of polyphosphazene-polyester blends. Co-substituting a polyphosphazene backbone with both hydrophilic glycylglycine dipeptide and hydrophobic 4-phenylphenoxy group generates a polymer with strong hydrogen bonding capacity. Rapid hydrolysis of the polyester component permits the formation of 3D void space filled with self-assembled polyphosphazene spheres. Characterization of such self-assembled porous structures reveals macropores (10,100 ,m) between spheres as well as micro- and nanopores on the sphere surface. A similar degradation pattern is confirmed In vivo using a rat subcutaneous implantation model. 12 weeks of implantation results in an interconnected porous structure with 82,87% porosity. Cell infiltration and collagen tissue in-growth between microspheres observed by histology confirms the formation of an in situ 3D interconnected porous structure. It is determined that the in situ porous structure results from unique hydrogen bonding in the blend promoting a three-stage degradation mechanism. The robust tissue in-growth of this dynamic pore forming scaffold attests to the utility of this system as a new strategy in regenerative medicine for developing solid matrices that balance degradation with tissue formation. [source]


Comparison of mass spectra of peptides in different matrices using matrix-assisted laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, MULTUM-IMG

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2008
Hisanao Hazama
The mass spectra of peptides obtained with different matrices were compared using a matrix-assisted laser desorption/ionization (MALDI) ion source and a multi-turn time-of-flight (TOF) mass spectrometer, MULTUM-IMG, which has been developed at Osaka University. Two types of solid matrices, , -cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), and a liquid matrix made from a mixture of 3-aminoquinoline and CHCA were used. When measuring the peak signal intensity of human angiotensin II [M+H]+ from a fixed sample position, the liquid matrix produced a stable signal over 1000 laser shots, while the signal obtained with CHCA and DHB decayed after about 300 and 100 shots, respectively. Significant differences in the mass resolving power were not observed between the spectra obtained with the three matrices. Signal peak areas were measured as a function of the cycle number in a multi-turn ion trajectory, i.e., the total flight time over a millisecond time scale. For both [M+H]+ of human angiotensin II and bovine insulin, the decay of the signal peak area was the most significant with CHCA, while that measured with DHB was the smallest. The results of the mean initial ion velocity measurements suggested that the extent of metastable decomposition of the analyte ions increased in order of DHB, the liquid matrix, and CHCA, which is consistent with the difference in the decay of the signal peak area as the total flight time increased. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Impact of surface thermodynamics on bacterial transport

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2001
Gang Chen
Microbial surface thermodynamics correlated with bacterial transport in saturated porous media. The surface thermodynamics was characterized by contact-angle measurement and the wicking method, which was related to surface free energies of Lifshitz,van der Waals interaction, Lewis acid,base interaction, and electrostatic interaction between the bacteria and the medium matrix. Transport of three different strains of bacteria present at three physiological states was measured in columns of silica gel and sand from the Canadian River Alluvium (Norman, OK, USA). Microorganisms in stationary state had the highest deposit on solid matrix, compared with logarithmic and decay states. The deposition correlated with the total surface free energy (,G132TOT) and the differences in ,G132TOT were mainly controlled by the Lewis acid,base interaction. Infrared spectroscopy showed that the increased deposition correlated with an increase in the hydrogen-bonding functional groups on the cell surfaces. [source]


Effect of earthworm activity (Aporrectodea giardi) on atrazine adsorption and biodegradation

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2006
T. Alekseeva
Summary We investigated the influence of earthworm (Aporrectodea giardi) activity on soil properties and on atrazine (AT) adsorption and biodegradation by comparing a coarse-textured smectite-free wetland soil (Brittany, France) with the earthworm casts derived from the top horizon of this soil. Casts are characterized by lower pH, are enriched in organic carbon (OC) and clay content, have a larger cation exchange capacity, and a greater exchangeable Ca content. The clay mineralogy of the soil studied and casts is characterized by a muscovite,kaolinite,chlorite association. In addition, the clay fraction of the soil contains lepidocrocite (,-FeOOH), which was not found in the casts. Atrazine adsorption isotherms were reasonably well described by the Freundlich equation and were all non-linear. The mean amounts of adsorbed AT for starting concentrations of 3,30 mg litre,1 ranged from 8 to 34%, being largest in earthworm casts. Soil AT adsorption capacity was well correlated with OC content. Non-decomposed organic matter present in the coarse size fractions and specific compounds present in earthworm casts (proteins, mono- and polysaccharides, polyphenols, sugars, lignin) and microbial and fungal biomass contribute to AT adsorption. Weak electrostatic (physical) sorption of AT on organic compounds and on mineral surfaces prevails. For casts, the formation of additional hydrophobic interactions between AT and SOM is proposed. We also studied AT biodegradation by the model bacterium Pseudomonas sp. strain ADP in the presence of soils or earthworm casts. An enhancement of the AT disappearance rate was observed in the presence of all the solid matrices tested compared with that obtained in an aqueous medium. The biodegradation rate was shown to be dependent not only on the OC content of the solid matrix, but mainly on its composition and structure. [source]


Negative Poisson's Ratio Behavior Induced by an Elastic Instability

ADVANCED MATERIALS, Issue 3 2010
Katia Bertoldi
Negative Poisson's ratio behavior has been uncovered in cellular solids that comprise a solid matrix with a square array of circular voids. The simplicity of the fabrication implies robust behavior, which is relevant over a range of scales. The behavior results from an elastic instability, which induces a pattern transformation and excellent quantitative agreement is found between calculation and experiment. [source]


Investigation of a modified sequential iteration approach for solving coupled reactive transport problems

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2006
David J. Z. Chen
Abstract When contaminants enter the soil or groundwater, they may interact physically, geochemically and biochemically with the native water, microorganisms and solid matrix. A realistic description of a reactive transport regime that includes these processes requires joint consideration of multiple chemical species. Currently there are three common numerical approaches for coupling multispecies reaction and solute transport: the one-step approach, the sequential non-iterative approach (SNIA), and the sequential iterative approach (SIA). A modification of the SNIA method is the Strang-splitting method. In this study, a new modified sequential iteration approach (MSIA) for solving multicomponent reactive transport in steady state groundwater flow is presented. This coupling approach has been applied to two realistic reactive transport problems and its performance compared with the SIA and the Strang-splitting methods. The comparison shows that MSIA consistently converges faster than the other two coupling schemes. For the simulation of nitrogen and related species transport and reaction in a riparian aquifer, the total CPU time required by MSIA is only about 38% of the total CPU time required by the SIA, and only 50% of the CPU time required by the Strang-splitting method. The test problem results indicate that the SIA has superior accuracy, while the accuracy of MSIA is marginally better than that of the Strang-splitting method. The overall performance of MSIA is considered to be good, especially for simulations in which computational time is a critical factor. Copyright © 2005 John Wiley & Sons, Ltd. [source]


A CBS-type stabilizing algorithm for the consolidation of saturated porous media

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2005
V. A. Salomoni
Abstract The presented method stems from the works by Zienkiewicz and co-workers for coupled fluid/thermal problems starting from the early 1990s. They propose algorithms to overcome the difficulties connected to the application of the FEM to the area of fluid mechanics, which include the problems of singular behaviour in incompressibility and the problems connected to convective terms. The major step forward was to introduce the concept of characteristic lines (the particle paths in a simple convection situation): for a class of problems with a single scalar variable, the equations in the characteristic co-ordinates regain self-adjointness. The procedure is called characteristic based split algorithm (CBS). We use here a CBS-type procedure for a saturated deformable elastic porous medium, in which the fluid velocity is governed by Darcy's equation (which comes directly from Navier,Stokes ones). The physical,mathematical model is a fully coupled one and is here used to study an incompressible flow inside a continuum with incompressible solid grains. The power of the adopted algorithm is to treat the basic equations in their strong form and to transform a usual ,u,p' problem into a ,u,v,p' one, where u generally indicates the displacement of the solid matrix and p and v the pressure and velocity of the fluid, respectively. Attention is focused on the expression of Darcy's velocity which is considered as the starting point of the algorithm. The accuracy of the scheme is checked by comparing the present predictions in a typical consolidation test with available analytical and numerical u,p solutions. A good fitting among different results has been obtained. It is further shown that the procedure eliminates the oscillations at the onset of consolidation, typical for many schemes. The FEM code Ed-Multifield has been used for implementing and testing the procedure. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Effects of ethyl benzoate on performance, morphology, and erosion of PLGA implants formed in situ

ADVANCES IN POLYMER TECHNOLOGY, Issue 1 2008
R. Astaneh
Abstract An in situ forming implant (ISFI) is a novel drug delivery system used for protein and peptide delivery, especially for cancer treatment. An ISFI based on 33% (w/w) poly(D,L -lactide- co -glycolide)(PLGA; 50:50)/3% (w/w) leuprolide acetate (LA)/64% (w/w) N -methyl-2-pyrrolidone (NMP) was prepared for this study. After injection of the final formulation, which is a viscous liquid to an aqueous medium, it deforms to become a semisolid or solid matrix. The performance of this matrix was investigated on the basis of peptide release from it. Erosion and morphology of ISFI were also studied. The effects of adding 12.8% (w/w) ethyl benzoate (EB) as a rate-modifying agent on performance, erosion, and morphology of ISFI were assessed. The implant containing EB showed very low burst release (5.53% ± 0.82%) and the morphology turns to closed pore-like structures. After adding EB, the morphology turns to closed pore-like structures. This type of morphology has very close relation to the performance of the implant as well. Finally, the effect of EB on performance, erosion, and morphology is explained by means of solvent,nonsolvent affinity, water permeation, and the rate of phase inversion. © 2008 Wiley Periodicals, Inc. Adv Polym Techn 27:17,26, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20114 [source]


Moisture Migration in Solid Food Matrices

JOURNAL OF FOOD SCIENCE, Issue 8 2003
Y.-C. Fu
ABSTRACT: The goals of this study were to measure moisture migration in a porous solid matrix simulating a real food (flour dough) and to accomplish heating of the solid matrix. An off-line technique and a microwave temperature controller system were developed for measuring moisture concentration under isothermal heating condition. A temperature profile of a cylindrical dough sample was achieved by accurate control of microwave energy input and preheated carrier gas temperature. Results showed a simplified 1st order kinetic model adequately predicted moisture loss in dough samples. Effect of temperature on the rate constant was adequately modeled by the Arrhenius relationship. The rate constant was found to be affected by porosity of the dough sample. [source]


Development of clinical dosage forms for a poorly water-soluble drug II: Formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2009
Ping Li
Abstract The solution of a poorly water-soluble drug in a liquid lipid,surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 µg/mL at pH 1,8 and 25°C) was dissolved in a melt of the mixture at 65,70°C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55°C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55,60°C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1750,1764, 2009 [source]


Influence of Iron Ore Indirect Reduction on the Transfer Process in Porous Media

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2006
Ming-Chun Li
The solid material used in most metallurgical reactions can be considered as porous media consisting of the accumulated pellets. When the fluid flows through the porous media, various chemical reactions may occur between the fluid and solid matrix which have a significant effect on the transfer process in the porous media. Based on derivation of the overall rate formulation of the representative elementary volume (REV), a mathematical model describing the transfer process in the porous media was established. The model was tested numerically by applying the implicit formulation finite volume method. The predictions were validated by comparison with the experimental results and literature data. For the indirect reduction of iron ores, the influence of the flow rate, the particle size, reaction rate, the dimension of the reactor, and the ratio of the Thielet number to the Peclet number on the distribution of gas concentration and the solid conversion degree were analyzed. [source]


Protein Engineering Strategies for Selective Protein Purification

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 11 2005
M. Hedhammar
Abstract When producing and purifying recombinant proteins it is of importance to minimize the number of unit operations during the purification procedure. This is accomplished by increasing the selectivity in each step. Due to the high selectivity of affinity chromatography it has a widespread use in protein purification. However, most target proteins lack a suitable affinity ligand usable for capture on a solid matrix. A way to circumvent this obstacle is to genetically fuse the gene encoding the target protein with a gene encoding a purification tag. When the chimeric protein is expressed, the tag allows for specific capture of the fusion protein. In industrial-scale production, extension of the target protein often is unwanted since it might interfere with the function of the target protein. Hence, a purification scheme developed for the native protein is desired. In this review, different fusion strategies used for protein purification are discussed. Also, the development of ligands for selective affinity purification of native target proteins is surveyed. [source]


ISTA 14,in-situ accumulation of PAHs in low-density polyethylene membranes in sediment

ENVIRONMENTAL TOXICOLOGY, Issue 5 2010
Damien A. Devault
Abstract The use of passive samplers for the assessment of organic contaminants has been extended to solid matrixes for the past decade. Passive sampling is usually applied to sediment in laboratory experiments involving significant upheaval, whereas in-situ experiments remain rare. In this study, low-density polyethylene (LDPE) strips were deployed within the sediments of a small river contaminated with polycyclic aromatic hydrocarbons (PAHs). LDPE strips were deployed in the 3-cm depth sediment layer. Over a period of 36 days, LDPE strips were regularly retrieved and accumulated PAHs in LDPE were extracted and analyzed. Accumulations of hydrophobic contaminants in LDPE directly exposed in the sediment were observed. Accumulations in LDPE were observed for moderately hydrophobic PAHs with the highest concentrations in the sediment. Low accumulations were observed for more hydrophobic compounds, despite their presence in high concentrations in the sediment. This was explained by very low exchange rates and competitive interactions with particles in the sediment. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010. [source]