Solid Boundaries (solid + boundary)

Distribution by Scientific Domains


Selected Abstracts


Interface tracking finite volume method for complex solid,fluid interactions on fixed meshes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 2 2002
H. S. Udaykumar
Abstract We present a numerical technique for computing flowfields around moving solid boundaries immersed in fixed meshes. The mixed Eulerian,Lagrangian framework treats the immersed boundaries as sharp solid,fluid interfaces and a conservative finite volume formulation allows boundary conditions at the moving surfaces to be exactly applied. A semi-implicit second-order accurate spatial and temporal discretization is employed with a fractional-step scheme for solving the flow equations. A multigrid accelerator for the pressure Poisson equations has been developed to apply in the presence of multiple embedded solid regions on the mesh. We present applications of the method to two types of problems: (a) solidification in the presence of flows and particles, (b) fluid,structure interactions in flow control. In both these problems, the sharp interface method presents advantages by being able to track arbitrary interface motions, while capturing the full viscous, unsteady dynamics. Copyright © 2001 John Wiley & Sons, Ltd. [source]


A new modification of the immersed-boundary method for simulating flows with complex moving boundaries

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2006
Jian Deng
Abstract In this paper, a new immersed-boundary method for simulating flows over complex immersed, moving boundaries is presented. The flow is computed on a fixed Cartesian mesh and the solid boundaries are allowed to move freely through the mesh. The present method is based on a finite-difference approach on a staggered mesh together with a fractional-step method. It must be noted that the immersed boundary is generally not coincident with the position of the solution variables on the grid, therefore, an appropriate strategy is needed to construct a relationship between the curved boundary and the grid points nearby. Furthermore, a momentum forcing is added on the body boundaries and also inside the body to satisfy the no-slip boundary condition. The immersed boundary is represented by a series of interfacial markers, and the markers are also used as Lagrangian forcing points. A linear interpolation is then used to scale the Lagrangian forcing from the interfacial markers to the corresponding grid points nearby. This treatment of the immersed-boundary is used to simulate several problems, which have been validated with previous experimental results in the open literature, verifying the accuracy of the present method. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Finite volume solution of the Navier,Stokes equations in velocity,vorticity formulation

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2005
Baoshan Zhu
Abstract For the incompressible Navier,Stokes equations, vorticity-based formulations have many attractive features over primitive-variable velocity,pressure formulations. However, some features interfere with the use of the numerical methods based on the vorticity formulations, one of them being the lack of a boundary conditions on vorticity. In this paper, a novel approach is presented to solve the velocity,vorticity integro-differential formulations. The general numerical method is based on standard finite volume scheme. The velocities needed at the vertexes of each control volume are calculated by a so-called generalized Biot,Savart formula combined with a fast summation algorithm, which makes the velocity boundary conditions implicitly satisfied by maintaining the kinematic compatibility of the velocity and vorticity fields. The well-known fractional step approaches are used to solve the vorticity transport equation. The paper describes in detail how we accurately impose no normal-flow and no tangential-flow boundary conditions. We impose a no-flux boundary condition on solid objects by the introduction of a proper amount of vorticity at wall. The diffusion term in the transport equation is treated implicitly using a conservative finite update. The diffusive fluxes of vorticity into flow domain from solid boundaries are determined by an iterative process in order to satisfy the no tangential-flow boundary condition. As application examples, the impulsively started flows through a flat plate and a circular cylinder are computed using the method. The present results are compared with the analytical solution and other numerical results and show good agreement. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Numerical simulation of a single bubble by compressible two-phase fluids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2010
Siegfried Müller
Abstract The present work deals with the numerical investigation of a collapsing bubble in a liquid,gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non-conservative transport equations of the pressure law coefficients. The original first-order discretization is extended to higher order applying second-order ENO reconstruction to the primitive variables. The derivation of the non-conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale-based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2-D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser-induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd. [source]