Sol-gel Technique (sol-gel + technique)

Distribution by Scientific Domains


Selected Abstracts


Electrocatalytic Oxidation of Sulfur Containing Amino Acids at Renewable Ni-Powder Doped Carbon Ceramic Electrode: Application to Amperometric Detection L -Cystine, L -Cysteine and L -Methionine

ELECTROANALYSIS, Issue 21 2006
Abdollah Salimi
Abstract A sol-gel technique was used here to prepare a renewable carbon ceramic electrode modified with nickel powder. Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple due to Ni(II)/Ni(III) system with surface confined characteristics. The modified electrode shows excellent catalytic activity toward L -cystine, L -cysteine and L -methionine oxidation at reduced overpotential in alkaline solutions. In addition the antifouling properties at the modified electrode toward the above analytes and their oxidation products increases the reproducibility of results. L -cystine, L -cysteine and L -methionine were determined chronoamperometricaly at the surface of this modified electrode at pH range 9,13. Under the optimized conditions the calibration curves are linear in the concentration range 1,450,,M, 2,90,,M and 0.2,75,,M for L -cystine, L -methionine and L -cysteine determination, respectively. The detection limit and sensitivity were 0.64,,M, 3.8,nA/ ,M for L -cystine, 2,,M, 5.6,nA/ ,M for L -methionine and 0.2,,M and 8.1,nA/,M for L -cysteine. The advantageous of this modified electrode is high response, good stability and reproducibility, excellent catalytic activity for oxidation inert molecules at reduced overpotential and possibility of regeneration of the electrode surface by potential cycling for 5,minutes. Furthermore, the modified electrode has been prepared without using specific reagents. This sensor can be used as an amperometric detector for disulfides detection in chromatographic or flow systems. [source]


Synthesis and characterization of novel polyimide/SiO2 nanocomposite materials containing phenylphosphine oxide via sol-gel technique

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
Canan Kizilkaya
Abstract In this article, a series of novel polyimide/silica (PI/SiO2) nanocomposite coating materials were prepared from tetraethoxysilane (TEOS), ,-glycidyloxypropyltrimethoxysilane (GOTMS), and polyamic acid (PAA) via sol-gel technique. PAA was prepared by the reaction of 3,3,,4,4,-benzophenone tetracarboxylic dianhydride (BTDA) and bis (3-aminophenyl) phenyphosphine oxide (BAPPO) in N -methyl-2- pyrrolidone (NMP). BAPPO was synthesized hydrogenation of bis (3-nitrophenyl) phenyphosphine oxide (BNPPO) in the presence of Pd/C. The silica content in the hybrid coating materials was varied from 0 to 20 wt %. The molecular structures of the composite materials were analyzed by means of FT-IR and 29Si-NMR spectroscopy techniques. The physical and mechanical properties of the nanocomposites were evaluated by various techniques such as, hardness, contact angle, and optical transmission and tensile tests. These measurements revealed that all the properties of the nanocomposite coatings were improved noticeable, by the addition of sol-gel precursor into the coating formulation. Thermogravimetric analysis showed that the incorporation of sol-gel precursor into the polyimide matrix leads to an enhancement in the thermal stability and also flame resistance properties of the coating material. The surface morphology of the hybrid coating was characterized by scanning electron microscopy (SEM). SEM studies indicated that nanometer-scaled inorganic particles were homogenously dispersed throughout the polyimide matrix © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Titanium dioxide thin films deposited by the sol-gel technique starting from titanium oxy-acetyl acetonate: gas sensing and photocatalyst applications

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 9 2010
A. Maldonado
Abstract Titanium dioxide (TiO2) thin films were deposited onto sodocalcic glass plates by the sol-gel technique, starting from a non-alkoxide route, namely, titanium oxy-acetyl acetonate as Ti precursor. Film thickness effect on both the gas sensing and photocatalytic degradation performance was studied. The as-deposited films were annealed in air at 400 °C. All the X-ray spectra of the films show a very broad-peak centered in a 2, angle around 30°. In the case of the thinnest films the surface morphology is uniform and very smooth, whereas for the thickest films the corresponding surface is covered by grains with a rod-like shape with a length on the order of 140 nm. The films were tested both for two straightforward applications: ultraviolet assisted-degradation of methylene blue dissolved in water, at different times, as well as gas sensor in a controlled propane (C3H8) atmosphere. As the film thickness increases, the degradation of methylene blue (MB) also increases. The thickest TiO2 thin films after being exposed by 5 hours to the catalytic degradation, promoted by ultraviolet illumination, showed a final MB solution degradation in the order of 48%. This reult can be associated with the increase in the effective exposed area of the TiO2 thin films. On the other hand, the exposition of the films to a controlled propane atmosphere produced a significant change in the surface electrical resistance of the films at operating temperatures of 200 °C and above. In fact, in the case of the thickest TiO2 films, a dramatic electrical resistance change of non-exposed and propane exposed , 560 to 0.7 M, ,, was registered. The results show that TiO2 films deposited by an economical deposition technique, as is the case of the sol-gel technique, could have an important potential in industrial applications. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Properties of Ionic Liquid Confined in Porous Silica Matrix

CHEMPHYSCHEM, Issue 9 2010
Manish Pratap Singh
Abstract Porous silica matrices of different pore sizes with confined ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) [BMIM] [PF6] were prepared by sol-gel technique using a tetraethyl orthosilicate (TEOS) precursor with an aim to study the changes in physico-chemical properties of ionic liquid on confinement. It is found that on confinement 1) melting point decreases, 2) fluorescence spectra shows a red shift and 3) the vibrational bands are affected particularly those of imadazolium ring, which interacts more with the walls of the silica matrix. Preliminary theoretical calculations suggest that SiO2 matrix interact more with the heterocyclic group of [BMIM] cation than the tail alkyl chain end group resulting in significant changes in the aromatic vibrations. [source]