Solar Power (solar + power)

Distribution by Scientific Domains


Selected Abstracts


Solar power for an Antarctic rover

HYDROLOGICAL PROCESSES, Issue 4 2006
J. H. Lever
Abstract Sensors mounted on mobile robots could serve a variety of science missions in Antarctica. Although weather conditions can be harsh, Antarctic snowfields offer unique conditions to facilitate long-distance robot deployment: the absence of obstacles, firm snow with high albedo, and 24 h sunlight during the summer. We have developed a four-wheel-drive, solar-powered rover that capitalizes on these advantages. Analyses and field measurements confirm that solar power reflected from Antarctic snow contributes 30,40% of the power available to a robot consisting of a five-side box of solar panels. Mobility analyses indicate that the 80 kg rover can move at 0·8 m s,1 during clear sky conditions on firm snow into a 5 m s,1 headwind, twice the speed needed to achieve the design target of 500 km in 2 weeks. Local winter tests of the chassis demonstrated good grade-climbing ability and lower than predicted rolling resistance. Tests of the completed robot occurred in Greenland in 2005. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Solar power to prevent type 1 diabetes?

PEDIATRIC DIABETES, Issue 2 2008
Klaus Badenhoop
No abstract is available for this article. [source]


Solar power for an Antarctic rover

HYDROLOGICAL PROCESSES, Issue 4 2006
J. H. Lever
Abstract Sensors mounted on mobile robots could serve a variety of science missions in Antarctica. Although weather conditions can be harsh, Antarctic snowfields offer unique conditions to facilitate long-distance robot deployment: the absence of obstacles, firm snow with high albedo, and 24 h sunlight during the summer. We have developed a four-wheel-drive, solar-powered rover that capitalizes on these advantages. Analyses and field measurements confirm that solar power reflected from Antarctic snow contributes 30,40% of the power available to a robot consisting of a five-side box of solar panels. Mobility analyses indicate that the 80 kg rover can move at 0·8 m s,1 during clear sky conditions on firm snow into a 5 m s,1 headwind, twice the speed needed to achieve the design target of 500 km in 2 weeks. Local winter tests of the chassis demonstrated good grade-climbing ability and lower than predicted rolling resistance. Tests of the completed robot occurred in Greenland in 2005. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Energy Conservation in Urban Areas

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 1 2008
Hideharu Sugihara Member
Abstract This article outlines the energy conservation measures in the civilian sector from a few different viewpoint regarding energy conservation in cities. First, the energy consumption trends in the business and residential sectors are discussed, focusing the importance of energy conservation measures in applications such as home heating, water heating and specific power demand. Second, as a measure to reduce energy demand itself, energy conservation by way of applying heat insulating materials to buildings and changing the life style of residents is considered. And from the viewpoint of improving the energy system efficiency, additionally discussed here are the measures to improve the efficiency of each energy equipment such as air-conditioners and co-generation equipment, and the characteristics of District heating and cooling systems such as the local energy infrastructures. Lastly, from the knowledge obtained through model analyses by the authors, a scheme is recommended that would be one of the most efficient city-energy schemes where the energy systems including heat pumps, co-generators or equipment using solar power are utilized for their best-suited applications for business and residential customers. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Design and power management of a solar-powered "Cool Robot" for polar instrument networks

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 7 2007
Laura E. Ray
The Cool Robot is a four-wheel-drive, solar-powered, autonomous robot designed to support summertime science campaigns in Antarctica and Greenland over distances exceeding 500 km. This paper provides an overview of key features of the robot, including design for good mobility, high efficiency, and long-term deployment under solar power in harsh polar environments. The Cool Robot's solar panel box, comprising panels on four sides and a top panel, encounters insolation variations with a bandwidth of up to 1 Hz due to sastrugi. The paper details a unique photovoltaic control algorithm to accommodate these variations. We deployed the robot at Summit Camp, Greenland to validate its mobility and power budget and to assess the photovoltaic control system. The 61 kg robot drove continuously at 0.78 m/s on soft snow, its 160 W average power demand met by solar power alone under clear skies above 16° sun elevation. The power-control system reliably matched input with demand as insolation varied during testing. A simple GPS waypoint-following algorithm provides low-bandwidth path planning and course correction and demonstrated reliable autonomous navigation during testing over periods of 5,8 h. Field data validate the Cool Robot design models and indicate that it will exceed its design goal of carrying a 15 kg payload 500 km across Antarctica in 2 weeks. A brief description of instrument payloads and scientific studies aided by networks of such autonomous solar robots is provided. © 2007 Wiley Periodicals, Inc. [source]


Space and terrestrial photovoltaics: synergy and diversity,

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 6 2002
Sheila G. Bailey
A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the 1970s and 1980s, 1990s and beyond. The synergy of both communities, both at the beginning and in the present, and hopefully in the future, are highlighted, with examples of the important features in each program. The space community which was impressed by the light weight and reliability of photovoltaics drove much of the early development. Even today, nearly every satellite and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems was only a small fraction of the satellite and launch cost, the use of much of this technology in the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advances, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost nonexistent. Recent work by both communities have focused on the development thin-film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and terrestrial solar cell communities shall once again share many common goals and, in fact, companies may manufacture both space and terrestrial solar cells in III,V materials and thin-film materials. Basic photovoltaics research, including these current trends in nanotechnology, provides a valuable service for both worlds in that fundamental understanding of cell processes is still vitally important, particularly with new materials or new cell structures. It is entirely possible that one day we might have one solar array design that will meet the criteria for success in both space and on the Earth or perhaps the Moon or Mars. Published in 2002 by John Wiley & Sons, Ltd. [source]


Consumers and green electricity: profiling potential purchasers

BUSINESS STRATEGY AND THE ENVIRONMENT, Issue 1 2003
Ian H. Rowlands
Globally, consumers are beginning to be able to choose their electricity supplier. Increasing concerns about the environment are prompting some of them to consider ,green' electricity,that is, electricity that has been generated by more environmentally sustainable means (for example, solar power or wind power). This article profiles the potential purchaser of green electricity. Drawing upon the literature on green product purchasers more generally, three sets of hypotheses are presented,more specifically, it is proposed that those who would pay increasingly higher premiums for green electricity are more likely to possess particular demographic characteristics, attitudinal characteristics and socialization characteristics. Responses from a survey distributed in a major Canadian metropolitan area are then examined. Attitudinal characteristics,specifically ecological concern, liberalism and altruism,best identify the potential purchasers of green electricity. Suggestions for managers and marketers are made following these findings. Directions for future research are also presented. Copyright © 2003 John Wiley & Sons, Ltd. and ERP Environment. [source]