Home About us Contact | |||
Sorghum Midge (sorghum + midge)
Selected AbstractsHost-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghumJOURNAL OF APPLIED ENTOMOLOGY, Issue 3 2001Sharma Sorghum midge, Stenodiplosis (Contarinia) sorghicola (Coquillett) is an important pest of grain sorghum world-wide. Considerable progress has been made in screening and breeding for resistance to sorghum midge. However, some of the sources of resistance have become susceptible to sorghum midge in Kenya, in eastern Africa. Therefore, the wild relatives of Sorghum bicolor were studied as a possible source of new genes conferring resistance to sorghum midge. Midge females did not lay eggs in the spikelets of Sorghum amplum, Sorghum bulbosum, and Sorghum angustum compared to 30% spikelets with eggs in Sorghum halepense when infested with five midge females per panicle under no-choice conditions. However, one egg was laid in S. amplum when infested with 50 midges per panicle. A larger number of midges were attracted to the odours from the panicles of S. halepense than to the panicles of Sorghum stipoideum, Sorghum brachypodum, S.angustum, Sorghum macrospermum, Sorghum nitidium, Sorghum laxiflorum, and S. amplum in dual-choice olfactometer tests. The differences in midge response to the odours from S. halepense and Sorghum intrans were not significant. Under multi-choice conditions, when the females were also allowed a contact with the host, more sorghum midge females were attracted to the panicles of S. bicolor compared with S. amplum, S. angustum, and S. halepense. In another test, numerically more midges responded to the panicles of IS 10712 compared with S. halepense, whereas the differences in midge response to the panicles of ICSV 197 (S. bicolor) and S. halepense were not apparent, indicating that S. halepense is as attractive to sorghum midge females as S. bicolor. The wild relatives of sorghum (except S. halepense) were not preferred for oviposition, and they were also less attractive to the sorghum midge females. Thus, wild relatives of sorghum can prove to be an alternative source of genes for resistance to sorghum midge. [source] Effect of soil burial depth and wetting on mortality of diapausing larvae and patterns of post-diapause adult emergence of sorghum midge, Stenodiplosis sorghicola (Coquillett) (Diptera: Cecidomyiidae)AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 3 2006Bernard A Franzmann Abstract, In south-eastern Queensland, Australia, sorghum planted in early spring usually escapes sorghum midge, Stenodiplosis sorghicola, attack. Experiments were conducted to better understand the role of winter diapause in the population dynamics of this pest. Emergence patterns of adult midge from diapausing larvae on the soil surface and at various depths were investigated during spring to autumn of 1987/88,1989/90. From 1987/88 to 1989/90, 89%, 65% and 98% of adult emergence, respectively, occurred during November and December. Adult emergence from larvae diapausing on the soil surface was severely reduced due to high mortality attributed to surface soil temperatures in excess of 40°C, with much of this mortality occurring between mid-September and mid-October. Emergence of adults from the soil surface was considerably delayed in the 1988/89 season compared with larvae buried at 5 or 10 cm which had similar emergence patterns for all three seasons. In 1989/90, when a 1-cm-deep treatment was included, there was a 392% increase in adult emergence from this treatment compared with deeper treatments. Some diapausing larvae on the surface did not emerge at the end of summer in only 1 year (1989/90), when 28.0% of the larvae on the surface remained in diapause, whereas only 0.8% of the buried larvae remained in diapause. We conclude that the pattern of emergence explains why spring plantings of sorghum in south-eastern Queensland usually escape sorghum midge attack. [source] DNA sequence variation in the ITS-1 rDNA subunit and host relationships in sorghum midge, Stenodiplosis sorghicola (Coquillett) (Diptera: Cecidomyiidae), in AustraliaAUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2002Bradley C Congdon Abstract Sequence variation in the internal transcribed spacer (ITS-1) ribosomal DNA subunit was examined for sorghum midge obtained from introduced and native hosts in south-eastern and central Queensland. No variation was observed relative to host plant or geographical distance for midges collected from two introduced hosts, grain sorghum (Sorghum bicolor) and Johnson grass (S. halepense); however, sequence differences were observed between midges from introduced and native hosts and among midges from a single native host, slender bluegrass (Dichanthium affine). No evidence was observed of introduced midges on native hosts, or vice versa. These results agree with previously hypothesised host distributions for native and introduced midges in Australia, and expand the sample of introduced hosts to include Johnson grass. They suggest that Stenodiplosis sorghicola, the principal midge infesting grain sorghum, is also the most common species on Johnson grass. This confirms that Johnson grass plays a role in the population dynamics of S. sorghicola and suggests that midges originating from Johnson grass may influence levels of infestation in grain sorghum. [source] Artificial infestation of sorghum spikelets with eggs of Stenodiplosis sorghicola (Coquillett) (Diptera: Cecidomyiidae) by water injectionAUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2001Adam T Hardy Abstract A technique for artificially infesting sorghum spikelets with eggs of sorghum midge is described and compared with natural oviposition achieved in a glasshouse cage trial. This technique was developed to facilitate antibiosis resistance related studies of midge biology, and to overcome the reduced and inconsistent oviposition achieved in sorghum lines that contain ovipositional-antixenosis resistance. Injecting an aqueous suspension of exactly two midge eggs between the glumes of individual sorghum spikelets using a micropipette produced consistent, low egg densities across five lines of varying resistance (0.8,1.2 eggs per spikelet; 50,70% infestation), while water injection of four to six eggs per spikelet in the same lines produced high and consistent egg densities (two to three eggs per spikelet; > 80% infestation). In contrast to both of the water-injection treatments, natural oviposition within the same five lines produced inconsistent egg densities, even when midge densities were adjusted to account for the variable levels of ovipositional antixenosis present in each line (one to four eggs per spikelet; 40,80% infestation). A bioassay was also conducted to determine the effect of suspending midge eggs in water on egg hatch, neonate survival and fitness. Aqueous suspensions of midge eggs stored for 4 h at room temperature produced 79% egg hatch. However, aqueous egg suspensions refrigerated at 4°C for 1,7 days reduced egg hatch (41,64%), lowered larval longevity and reduced maximum movement of neonate larvae. No eggs hatched after 14 days of refrigerated storage. [source] |