Somatic Cell Nuclei (somatic + cell_nucleus)

Distribution by Scientific Domains


Selected Abstracts


Ploidy mosaicism in well-developed nuclear transplants produced by transfer of adult somatic cell nuclei to nonenucleated eggs of medaka (Oryzias latipes)

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2007
Elena Kaftanovskaya
Chromosomal abnormalities such as ploidy mosaicism have constituted a major obstacle to the successful nuclear transfer of adult somatic cell nuclei in lower vertebrates to date. Euploid mosaicism has been reported previously in well-developed amphibian transplants. Here, we investigated ploidy mosaicisms in well-developed transplants of adult somatic cell nuclei in medaka fish (Oryzias latipes). Donor nuclei from primary cultured cells from the adult caudal fin of a transgenic strain carrying the green fluorescent protein gene (GFP) were transferred to recipient nonenucleated eggs of a wild-type strain to produce 662 transplants. While some of the transplants developed beyond the body formation stage and several hatched, all exhibited varying degrees of abnormal morphology, limited growth and subsequent death. Twenty-one transplants, 19 embryos and two larvae, were selected for chromosomal analysis; all were well-developed 6-day-old or later embryonic stages exhibiting slight morphological abnormalities and the same pattern of GFP expression as that of the donor strain. In addition, all exhibited various levels of euploid mosaicism with haploid-diploid, haploid-triploid or haploid-diploid-triploid chromosome sets. No visible chromosomal abnormalities were observed. Thus, euploid mosaicism similar to that observed in amphibians was confirmed in well-developed nuclear transplants of fish. [source]


Changes in global histone acetylation pattern in somatic cell nuclei after their transfer into oocytes at different stages of maturation

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2008
Helena Fulka
Abstract In our study, we have examined the pattern of global histone modification changes in somatic cell nuclei after their transfer into mouse oocytes at different stages of maturation or after their parthenogenetic activation. While germinal vesicle (GV) staged immature oocytes are strongly labeled with anti-acetylated histone H3 and H4 antibodies, the signal is absent in both metaphase I and metaphase II oocytes (MI, MII). In contrast, the oocytes of all maturation stages show a presence of trimethylated H3/K4 in their chromatin. When somatic cells were fused to intact or enucleated GV oocytes, both the GV and the somatic cell nucleus showed a very strong signal for all the antibodies used. On the other hand, when somatic cells nuclei that are AcH3 and AcH4 positive before fusion are introduced into either intact or enucleated MI or MII oocytes, their acetylation signal decreased rapidly and was totally absent after a prolonged culture. This was not the case when anti-trimethyl H3/K4 antibody was used. The somatic cell chromatin showed only a slight decrease in the intensity of labeling after its transfer into MI or MII oocytes. This decrease was, however, evident only after a prolonged culture. These results suggest not only a relatively higher stability of the methylation modification but also some difference between the oocyte and somatic chromatin. The ability to deacetylate the chromatin of transferred somatic nuclei disappears rapidly after the oocyte activation. Our results indicate that at least some reprogramming activity appears in the oocyte cytoplasm almost immediately after GV breakdown (GVBD), and that this activity rapidly disappears after the oocyte activation. Mol. Reprod. Dev. 75: 556,564, 2008. © 2007 Wiley-Liss, Inc. [source]


Comparative proteomic analysis associated with term placental insufficiency in cloned pig

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2007
So-Young Lee
Abstract Somatic cell-derived nuclear transfer (scNT) is a method of animal cloning in which the oocyte reprograms a somatic cell nucleus to divide and execute developmental programs. Despite many successes in this field, cloning by scNT remains very inefficient. Unlike other cloned animals, pigs derived by scNT have placentas with severe villous hypoplasia. To obtain a better understanding of the protein networks involved in this phenomenon, we assessed global protein expression profiles in term placentas from scNT-derived and control animals. Proteomic analysis of term placentas from scNT-derived animals identified 43 proteins that were differentially expressed compared to control animals. Among them, 14-3-3 proteins and Annexin V, which are closely involved in the apoptotic signaling pathway, were significantly down- and up-regulated, respectively. Western blot analysis and immunohistochemistry indicated that down-regulation of 14-3-3 proteins in scNT-derived placentas induced apoptosis of cytotrophoblast cells via mitochondria-mediated apoptosis. Taken together, our results suggest that placental insufficiency in scNT-derived placentas may be due to apoptosis, induced in part by the down-regulation of 14-3-3 proteins and up-regulation of Annexin V. They also indicate that proteomic maps represent an important tool for future studies of placental insufficiency and pathology. [source]


Cloning Adult Farm Animals: A Review of the Possibilities and Problems Associated with Somatic Cell Nuclear Transfer

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 2 2003
J. L. Edwards
In 1997, Wilmut et al. announced the birth of Dolly, the first ever clone of an adult animal. To date, adult sheep, goats, cattle, mice, pigs, cats and rabbits have been cloned using somatic cell nuclear transfer. The ultimate challenge of cloning procedures is to reprogram the somatic cell nucleus for development of the early embryo. The cell type of choice for reprogramming the somatic nucleus is an enucleated oocyte. Given that somatic cells are easily obtained from adult animals, cultured in the laboratory and then genetically modified, cloning procedures are ideal for introducing specific genetic modifications in farm animals. Genetic modification of farm animals provides a means of studying genes involved in a variety of biological systems and disease processes. Moreover, genetically modified farm animals have created a new form of ,pharming' whereby farm animals serve as bioreactors for production of pharmaceuticals or organ donors. A major limitation of cloning procedures is the extreme inefficiency for producing live offspring. Dolly was the only live offspring produced after 277 attempts. Similar inefficiencies for cloning adult animals of other species have been described by others. Many factors related to cloning procedures and culture environment contribute to the death of clones, both in the embryonic and fetal periods as well as during neonatal life. Extreme inefficiencies of this magnitude, along with the fact that death of the surrogate may occur, continue to raise great concerns with cloning humans. [source]


Changes in global histone acetylation pattern in somatic cell nuclei after their transfer into oocytes at different stages of maturation

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2008
Helena Fulka
Abstract In our study, we have examined the pattern of global histone modification changes in somatic cell nuclei after their transfer into mouse oocytes at different stages of maturation or after their parthenogenetic activation. While germinal vesicle (GV) staged immature oocytes are strongly labeled with anti-acetylated histone H3 and H4 antibodies, the signal is absent in both metaphase I and metaphase II oocytes (MI, MII). In contrast, the oocytes of all maturation stages show a presence of trimethylated H3/K4 in their chromatin. When somatic cells were fused to intact or enucleated GV oocytes, both the GV and the somatic cell nucleus showed a very strong signal for all the antibodies used. On the other hand, when somatic cells nuclei that are AcH3 and AcH4 positive before fusion are introduced into either intact or enucleated MI or MII oocytes, their acetylation signal decreased rapidly and was totally absent after a prolonged culture. This was not the case when anti-trimethyl H3/K4 antibody was used. The somatic cell chromatin showed only a slight decrease in the intensity of labeling after its transfer into MI or MII oocytes. This decrease was, however, evident only after a prolonged culture. These results suggest not only a relatively higher stability of the methylation modification but also some difference between the oocyte and somatic chromatin. The ability to deacetylate the chromatin of transferred somatic nuclei disappears rapidly after the oocyte activation. Our results indicate that at least some reprogramming activity appears in the oocyte cytoplasm almost immediately after GV breakdown (GVBD), and that this activity rapidly disappears after the oocyte activation. Mol. Reprod. Dev. 75: 556,564, 2008. © 2007 Wiley-Liss, Inc. [source]