Soil Water Content (soil + water_content)

Distribution by Scientific Domains

Kinds of Soil Water Content

  • volumetric soil water content


  • Selected Abstracts


    Several components of global change alter nitrifying and denitrifying activities in an annual grassland

    FUNCTIONAL ECOLOGY, Issue 4 2006
    R. BARNARD
    Summary 1The effects of global change on below-ground processes of the nitrogen (N) cycle have repercussions for plant communities, productivity and trace gas effluxes. However, the interacting effects of different components of global change on nitrification or denitrification have rarely been studied in situ. 2We measured responses of nitrifying enzyme activity (NEA) and denitrifying enzyme activity (DEA) to over 4 years of exposure to several components of global change and their interaction (increased atmospheric CO2 concentration, temperature, precipitation and N addition) at peak biomass period in an annual grassland ecosystem. In order to provide insight into the mechanisms controlling the response of NEA and DEA to global change, we examined the relationships between these activities and soil moisture, microbial biomass C and N, and soil extractable N. 3Across all treatment combinations, NEA was decreased by elevated CO2 and increased by N addition. While elevated CO2 had no effect on NEA when not combined with other treatments, it suppressed the positive effect of N addition on NEA in all the treatments that included N addition. We found a significant CO2,N interaction for DEA, with a positive effect of elevated CO2 on DEA only in the treatments that included N addition, suggesting that N limitation of denitrifiers may have occurred in our system. Soil water content, extractable N concentrations and their interaction explained 74% of the variation in DEA. 4Our results show that the potentially large and interacting effects of different components of global change should be considered in predicting below-ground N responses of Mediterranean grasslands to future climate changes. [source]


    Associations between carbon isotope ratios of ecosystem respiration, water availability and canopy conductance

    GLOBAL CHANGE BIOLOGY, Issue 10 2004
    N. G. McDowell
    Abstract We tested the hypothesis that the stable carbon isotope signature of ecosystem respiration (,13CR) was regulated by canopy conductance (Gc) using weekly Keeling plots (n=51) from a semiarid old-growth ponderosa pine (Pinus ponderosa) forest in Oregon, USA. For a comparison of forests in two contrasting climates we also evaluated trends in ,13CR from a wet 20-year-old Douglas-fir (Pseudotsuga menziesii) plantation located near the Pacific Ocean. Intraannual variability in ,13CR was greater than 8.0, at both sites, was highest during autumn, winter, and spring when rainfall was abundant, and lowest during summer drought. The ,13CR of the dry pine forest was consistently more positive than the wetter Douglas-fir forest (mean annual ,13CR: ,25.41, vs. ,26.23,, respectively, P=0.07). At the Douglas-fir forest, ,13CR,climate relationships were consistent with predictions based on stomatal regulation of carbon isotope discrimination (,). Soil water content (SWC) and vapor pressure deficit (vpd) were the most important factors governing ,13CR in this forest throughout the year. In contrast, ,13CR at the pine forest was relatively insensitive to SWC or vpd, and exhibited a smaller drought-related enrichment (,2,) than the enrichment observed during drought at the Douglas-fir forest (,5,). Groundwater access at the pine forest may buffer canopy,gas exchange from drought. Despite this potential buffering, ,13CR at the pine forest was significantly but weakly related to canopy conductance (Gc), suggesting that ,13CR remains coupled to canopy,gas exchange despite groundwater access. During drought, ,13CR was strongly correlated with soil temperature at both forests. The hypothesis that canopy-level physiology is a critical regulator of ,13CR was supported; however, belowground respiration may become more important during rain-free periods. [source]


    Soil water content and yield variability in vineyards of Mediterranean northeastern Spain affected by mechanization and climate variability

    HYDROLOGICAL PROCESSES, Issue 11 2006
    M. C. Ramos
    Abstract The objective of this paper was to analyse the combined influence of the Mediterranean climate variability (particularly the irregular rainfall distribution throughout the year) and the land transformations carried out in vineyards of northeastern Spain on soil water content evolution and its influence on grape production. The study was carried out in a commercial vineyard located in the Anoia,Alt Penedès region (Barcelona province, northeastern Spain), which was prepared for mechanization with important land transformations. Two plots were selected for the study: one with low degree of transformation of the soil profile, representing a non-disturbed situation, and the second one in which more than 3 m were cut in the upper part of the plot and filled in the lower part, representing the disturbed situation. Soil water content was evaluated at three positions along the slope in each plot and at three depths (0,20, 20,40, 40,60 cm) during the period 1999,2001, years with different rainfall characteristics, including extreme events and long dry periods. Rainfall was recorded in the experimental field using a pluviometer linked to a data-logger. Runoff rates and yield were evaluated at the same positions. For the same annual rainfall, the season of the year in which rainfall is recorded and its intensity are critical for water availability for crops. Soil water content varies within the plot and is related to the soil characteristics existing at the different positions of the landscape. The differences in soil depth created by soil movements in the field mechanization give rise to significant yield reductions (up to 50%) between deeper and shallow areas. In addition, for the same annual rainfall, water availability for crops depends on its distribution over the year, particularly in soils with low water-storage capacity. The yield was strongly affected in years with dry or very dry winters. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Factors influencing Willow Tit Poecile montanus site occupancy: a comparison of abandoned and occupied woods

    IBIS, Issue 2007
    ALEX J. G. LEWIS
    The British Willow Tit Poecile montanus kleinschmidti underwent a decline of 85% between 1970 and 2003. The cause of this decline is unknown. However, several hypotheses have been put forward to account for it: competition from other tit species, predation by Great Spotted Woodpeckers Dendrocopos major and habitat change. In order to test these, woods that are currently occupied by Willow Tits were paired with woods (within 50 km) that had been abandoned by Willow Tits five or more years previously. Point counts for other tit species (potential competitors) and woodpecker species (potential predators) were carried out at ten evenly spaced points throughout each wood. Habitat variables were collected within a 50-m radius of where a Willow Tit was located (in the occupied woods) or where maps showed a Willow Tit had been located (for abandoned woods). No evidence was found for differences in numbers of potential competitor or potential predator species in abandoned and occupied woods. Soil water content was found to be higher at occupied sites. No other habitat features differed between the two categories of site. The drying up of British woods could therefore be implicated in the Willow Tit decline and this warrants further investigation. [source]


    Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon

    JOURNAL OF VEGETATION SCIENCE, Issue 2 2007
    Stefan Jirka
    Abstract Question: Is soil hydrology an important niche-based driver of biodiversity in tropical forests? More specifically, we asked whether seasonal dynamics in soil water regime contributed to vegetation partitioning into distinct forest types. Location: Tropical rain forest in northwestern Mato Grosso, Brazil. Methods: We investigated the distribution of trees and lianas , 1 cm DBH in ten transects that crossed distinct hydrological transitions. Soil water content and depth to water table were measured regularly over a 13-month period. Results: A detrended correspondence analysis (DCA) of 20 dominant species and structural attributes in 10 × 10 m subplots segregated three major forest types: (1) high-statured upland forest with intermediate stem density, (2) medium-statured forest dominated by palms, and (3) low-statured campinarana forest with high stem density. During the rainy season and transition into the dry season, distinct characteristics of the soil water regime (i.e. hydro-indicators) were closely associated with each vegetation community. Stand structural attributes and hydro-indicators were statistically different among forest types. Conclusions: Some upland species appeared intolerant of anaerobic conditions as they were not present in palm and campinarana sites, which experienced prolonged periods of saturation at the soil surface. A shallow impermeable layer restricted rooting depth in the campinarana community, which could heighten drought stress during the dry season. The only vegetation able to persist in campinarana sites were short-statured trees that appear to be well-adapted to the dual extremes of inundation and drought. [source]


    Soil water dynamics along a tree diversity gradient in a deciduous forest in Central Germany

    ECOHYDROLOGY, Issue 3 2010
    Inga Krämer
    Abstract This study aimed to investigate whether soil water dynamics differ along a tree species diversity gradient. The 12 study plots in the Hainich National Park, Germany, were composed of up to 11 tree species. Fagus sylvatica formed the monospecific plots. Mixed forest plots consisted of a variable admixture of other broad-leaved deciduous tree species such as Tilia spp., Fraxinus excelsior, Carpinus betulus, and Acer pseudoplatanus. Volumetric soil water content and soil water potential were measured for about two and a half years. Overall patterns of soil water dynamics were similar in all study plots. However, during a desiccation period in summer 2006, significant correlations between soil water in the upper soil and tree species diversity of the 12 study plots were observed. At the beginning of this period, soil water was extracted at higher rates in the species-rich plots than in the beech-dominated plots. However, later during the desiccation period, when atmospheric evaporative demand was higher, only the beech-dominated stands were able to increase soil water extraction. In plots of high tree species diversity, soil water reserves were already low and soil water extraction reduced. Possible explanations for high water extraction rates in mixed species plots at the beginning of the desiccation period include species-specific characteristics such as high maximum water use rate of some species, enhanced exploitation of soil water resources in mixed stands (complementarity effect), and additional water use of the herb layer, which increased along the tree species diversity gradient. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes

    ECOHYDROLOGY, Issue 2 2010
    Naama Raz Yaseef
    Abstract The distribution of precipitation inputs into different hydrological components of water-limited forest ecosystems determines water availability to trees and consequently forest productivity. We constructed a complete hydrological budget of a semi-arid pine forest (285 mm annual precipitation) by directly measuring its main components: precipitation (P), soil water content, evapotranspiration (ET, eddy covariance), tree transpiration (sap flux), soil evaporation (soil chambers), and intercepted precipitation (calculated). Our results indicated that on average for the 4-year study period, ET accounted for 94% of P, varying between 100% when P < 250 mm and 85% when P > 300 mm (with indications for losses to subsurface flow and soil moisture storage in wetter years). Direct measurements of the components of the ET flux demonstrated that both transpiration and soil evaporation were significant in this dry forest (45% and 36% of ET, respectively). Comparison between ecosystem ET (eddy covariance measurements) and the sum of its measured components showed good agreement on annual scales, but up to 30% discrepancies (in both directions) on shorter timescales. The pulsed storm pattern, characteristics of semi-arid climates, was sufficient to maintain the topsoil layer wet during the whole wet season. Only less often and intensive storms resulted in infiltration to the root zone, increasing water availability for uptake by deeper roots. Our results indicate that climate change predictions that link reduced precipitation with increased storm intensity may have a smaller effect on water availability to forest ecosystems than reduced precipitation alone, which could help forests' survival and maintain productivity even under drier conditions. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Woody plants modulate the temporal dynamics of soil moisture in a semi-arid mesquite savanna,

    ECOHYDROLOGY, Issue 1 2010
    Daniel L. Potts
    Abstract Climate variability and human activities interact to increase the abundance of woody plants in arid and semi-arid ecosystems worldwide. How woody plants interact with rainfall to influence patterns of soil moisture through time, at different depths in the soil profile and between neighboring landscape patches is poorly known. In a semi-arid mesquite savanna, we deployed a paired array of sensors beneath a mesquite canopy and in an adjacent open area to measure volumetric soil water content (,) every 30 min at several depths between 2004 and 2007. In addition, to quantify temporally dynamic variation in soil moisture between the two microsites and across soil depths we analysed , time-series using fast Fourier transforms (FFT). FFT analyses were consistent with the prediction that by reducing evaporative losses through shade and reducing rainfall inputs through canopy interception of small rainfall events, the mesquite canopy was associated with a decline in high-frequency (hour-to-hour and day-to-day) variation in shallow ,. Finally, we found that, in both microsites, high-frequency , variation declined with increasing soil depth as the influence of evaporative losses and inputs associated with smaller rainfall events declined. In this case, we argue that the buffering of shallow soil moisture against high-frequency variations can enhance nutrient cycling and alter the carbon cycle in dryland ecosystems. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Automated diffusion chambers to monitor diurnal and seasonal dynamics of the soil CO2 concentration profile

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2009
    F. Albanito
    Summary To better understand the factors controlling carbon dioxide (CO2) production and transport in soil, we developed a new method to continuously monitor soil CO2 concentration at multiple depths, by using diffusion chambers. The soil diffusion chambers are constructed from a high-density polyethylene cylindrical frame enclosed by a micro-polyvinylidene difluoride flat membrane (PVDF). All chambers are linked to an infrared gas analyser positioned above-ground through a multi-port valve system. We set up two experimental sites for long-term measurements of soil CO2 concentration, soil temperature and soil water content at depths of 0, 10, 20, 40 and 80 cm. The system provides the following advantages : (i) the use of the PVDF combined with the small dimensions of the diffusion chambers allows rapid diffusion of soil gas into the chambers and therefore a short equilibration time of the gas phase with the surrounding soil atmosphere, (ii) the equilibrating closed loop system allows the semi-continuous measurement of soil profile CO2 concentrations without creating a pressure differential within the chambers, thus reducing gas concentration distortions in the soil, (iii) the small size of the closed diffusion chambers reduces the initial soil disturbance during installation, (iv) it allows sampling in wet, humid soils, including ones that are waterlogged or temporarily saturated, and (v) the chambers do not require removal for maintenance purposes and are inexpensive. [source]


    Effects of wetting and drying cycles on in situ soil particle mobilization

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2008
    S. Majdalani
    Summary Understanding particle mobilization and transport in soils is a major concern for environmental protection and water resource management as they can act as vectors for sorbing pollutants. In natural soils, the existence of a finite size and renewable pool of dispersible particles has been hypothesized. Even though freeze-thaw and wetting-drying cycles have been identified as possible mechanisms of pool replenishment between rainfall events, to date the underlying phenomena ruling the renewal of particle pools are still largely unexplored. We carried out a series of infiltration-drainage experiments to study systematically the effects of periods without rain (pauses) on in situ particle mobilization in undisturbed soil columns. We found that, for a given column, pause duration between two rainfall events has a major influence on subsequent particle mobilization: the mass of leached particles increases with pause duration until it reaches a maximum (mass for a 200-hours pause is 15 time greater than for a 1-hour pause), and then it decreases for even longer pauses. This behaviour was correlated with soil water content, and can be explained by soil matrix weakening due to differential capillary stresses during drying. The consequences of this finding are important because the 15-fold increase in mass of leached particles, when pause duration is changed from 1 hour to 4 days, might overwhelm variations caused by changes in other parameters such as the ionic strength of the incoming solution or the rainfall intensity. [source]


    Shrinkage of initially very wet soil blocks, cores and clods from a range of European Andosol horizons

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2007
    F. Bartoli
    Summary In advanced stages of volcanic ash soil formation, when more clay is formed, soil porosity values and soil water retention capacities are large and the soils show pronounced shrinkage on drying. Soil shrinkage is a key issue in volcanic soil environments because it often occurs irreversibly when topsoils dry out after changes from permanent grassland or forest to agriculture. European Andosols have developed in a wide range of climatic conditions, leading to a wide range in intensity of both weathering and organo-mineral interactions. The question arises as to whether these differences affect their shrinkage properties. We aimed to identify common physically based shrinkage laws which could be derived from soil structure, the analysis of soil constituents, the selected sampling size and the drying procedure. We found that the final volumetric shrinkage of the initially field-wet (56,86% of total porosity) or capillary-wet (87,100% of total porosity) undisturbed soil samples was negatively related to initial bulk density and positively related to initial capillary porosity (volumetric soil water content of soil cores after capillary rise). These relationships were linear for the soil clods of 3,8 cm3, with final shrinkage ranging from 21.2 to 52.2%. For soil blocks of 240 cm3 and soil cores of 28.6 cm3 we found polynomial and exponential relationships, respectively, with thresholds separating shrinkage and nearly non-shrinkage domains, and larger shrinkage values for the soil cores than for the soil blocks. For a given sample size, shrinkage was more pronounced in the most weathered and most porous Andosol horizons, rich in Al-humus, than in the less weathered and less porous Andosol horizons, poor in Al-humus. The Bw horizons, being more weathered and more porous, shrank more than the Ah horizons. We showed that the structural approach combining drying kinetics under vacuum, soil water analysis and mercury porosimetry is useful for relating water loss and shrinkage to soil structure and its dynamics. We also found that the more shrinkage that occurred in the Andosol horizon, the more pronounced was its irreversible mechanical change. [source]


    A porous-matrix sensor to measure the matric potential of soil water in the field

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2007
    W. R. Whalley
    Summary The matric potential of soil water is probably the most useful assessment of soil water status. However, the water-filled tensiometer (the benchmark instrument for measuring matric potential) typically only operates in the range 0 to ,85 kPa. In this paper, we report the development of a porous-matrix sensor to measure matric potential in the approximate range ,50 to ,300 kPa. The sensor uses a dielectric probe to measure the water content of a ceramic material with known water retention characteristics. The calculation of matric potential takes into account hysteresis through the application of an appropriate model to measured wetting and drying loops. It is important that this model uses closed, rather than open, scanning loops. The calibrated sensors were tested in the field and the output compared with data from water-filled tensiometers and dielectric measurements of soil water content. These comparisons indicated that conventional tensiometers gave stable but false readings of matric potential when soil dried to matric potentials more negative than ,80 kPa. The porous-matrix sensors appeared to give reliable readings of matric potential in soil down to ,300 kPa and also responded appropriately to repeated wetting and drying. This porous-matrix sensor has considerable potential to help understand plant responses to drying soil. [source]


    Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2004
    R. Teepe
    Summary Freezing and thawing influence many physical, chemical and biological processes in soils, including the production of trace gases. We studied the effects of freezing and thawing on three soils, one sandy, one silty and one loamy, on the emissions of N2O and CO2. We also studied the effect of varying the water content, expressed as the percentage of the water-filled pore space (WFPS). Emissions of N2O during thawing decreased in the order 64% > 55% > 42% WFPS, which suggests that the retardation of the denitrification was more pronounced than the acceleration of the nitrification with increasing oxygen concentration in the soil. However, emissions of N2O at 76% WFPS were less than at 55% WFPS, which might be caused by an increased ratio of N2/N2O in the very moist conditions. The emission of CO2 was related to the soil water, with the smallest emissions at 76% WFPS and largest at 42% WFPS. The emissions of CO2 during thawing exceeded the initial CO2 emissions before the soils were frozen, which suggests that the supply of nutrients was increased by freezing. Differences in soil texture had no marked effect on the N2O emissions during thawing. The duration of freezing, however, did affect the emissions from all three soils. Freezing the soil for less than 1 day had negligible effects, but freezing for longer caused concomitant increases in emissions. Evidently the duration of freezing and soil water content have important effects on the emission of N2O, whereas the effects of texture in the range we studied were small. [source]


    Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2010
    Thomas E. Freitag
    Abstract The relationship between biogeochemical process rates and microbial functional activity was investigated by analysis of the transcriptional dynamics of the key functional genes for methanogenesis (methyl coenzyme M reductase; mcrA) and methane oxidation (particulate methane monooxygenase; pmoA) and in situ methane flux at two peat soil field sites with contrasting net methane-emitting and -oxidizing characteristics. qPCR was used to quantify the abundances of mcrA and pmoA genes and transcripts at two soil depths. Total methanogen and methanotroph transcriptional dynamics, calculated from mcrA and pmoA gene : transcript abundance ratios, were similar at both sites and depths. However, a linear relationship was demonstrated between surface mcrA and pmoA transcript dynamics and surface flux rates at the methane-emitting and methane-oxidizing sites, respectively. Results indicate that methanotroph activity was at least partially substrate-limited at the methane-emitting site and by other factors at the methane-oxidizing site. Soil depth also contributed to the control of surface methane fluxes, but to a lesser extent. Small differences in the soil water content may have contributed to differences in methanogen and methanotroph activities. This study therefore provides a first insight into the regulation of in situ, field-level surface CH4 flux at the molecular level by an accurate reflection of gene : transcript abundance ratios for the key genes in methane generation and consumption. [source]


    Detailed geomorphological survey of a small mountain drainage area, Abisko, northern Swedish Lapland

    GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3-4 2002
    Lena Rubensdotter
    A thorough geomorphological survey of a small (2km2) drainage area has been conducted using digital magnification of aerial photographs in conjunction with field visits. The result presented is a geomorphological map where individual geomorphological features down to metre size can be identified. The study was done in connection with a project focusing on the relationship between geomorphological processes and lacustrine sedimentation. Good knowledge of the geomorphological setting and the related process activity in the catchment is important in studies using lacustrine sediments as environmental archives. The survey reveals a small,scale geomorphology dominated by a number of different periglacial upfreezing forms together with bedrock,controlled slope processes. Three different geographically separated geomorphological assemblages were recognised with few sediment transportation pathways connecting them. Composition of substrate, soil water content and vegetation cover combined with different slope angles are probably the most important factors controlling the distribution of the geomorphological features. [source]


    Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades

    GLOBAL CHANGE BIOLOGY, Issue 7 2009
    D. W. HOPKINS
    Abstract A recent report of widespread declines in soil organic C (SOC) in the UK over the 10,25 years until the early 2000s has focussed attention on the importance of resampling previously characterized sites to assess long-term trends in SOC contents and the importance of soils as a potentially volatile and globally significant reservoir of terrestrial C. We have used two sets of long-term experimental plots which have been under constant and known management for over a century and for which historical data exist that allow comparison over recent decades to determine what, if any, changes in SOC content have occurred. The plots used are the Palace Leas (PL) Meadow Hay Plots in north-east England (UK) established in 1897, and from the Park Grass (PG) Continuous Hay experiment established in 1856 at Rothamsted in south-east England. Collectively, these plots represent the only grassland sites in the UK under long-term management where changes in SOC over several decades can be assessed, and are probably unique in the world. The plots have received different manure and fertilizer treatment and have been under known management for at least 100 years. In 1982, total SOC contents were determined for the 0,27 cm layer of six of the PL plots using measurements of SOC concentrations, bulk density and soil depth. In 2006, the same six PL plots were resampled and SOC contents determined again. Four of the plots showed no net change in SOC content, but two plots showed net loss of SOC of 15% and 17% (amounting to decreases of 18 and 15 t C ha,1) since 1982. However, these differences in total SOC content were in a similar range to the variations in bulk density (6,31%) with changing soil water content. In 1959, the soil masses and SOC concentrations to 23 cm depth were measured on six PG plots with fertilizer and manure treatments corresponding closely with those measured on PL. In 2002, the SOC concentrations on the same plots were measured again. On three of the PG plots, SOC concentrations had declined by 2,10%, but in the other three it had increased by 4,8% between 1959 and 2002. If it is assumed that the soil bulk density had not changed over this period, the losses of SOC from the top soils ranged range from 10 to 3 t C ha,1, while the gains ranged from 4 to 7 t C ha,1. When the differences with time in SOC contents for the six PL and the six PG plots were examined using paired t -tests, that is, regarding the plots as two sets of six replicate permanent grasslands, there were no significant differences between 1982 and 2006 for the PL plots or between 1959 and 2002 for the PG plots. Thus, these independent observations on similar plots at PL and PG indicate there has been no consistent decrease in SOC stocks in surface soils under old, permanent grassland in England in recent decades, even though meteorological records for both sites indicate significant warming of the soil and air between 1980 and 2000. Because the potential influences of changes in management or land use have been definitively excluded, and measured rather than derived bulk densities have been used to convert from SOC concentrations to SOC amounts, our observations question whether for permanent grassland in England, losses in SOC in recent decades reported elsewhere can be attributed to widespread environmental change. [source]


    Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem

    GLOBAL CHANGE BIOLOGY, Issue 7 2008
    GEORG WOHLFAHRT
    Abstract The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m,2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3,4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed , especially since arid and semiarid biomes make up >30% of Earth's land surface. [source]


    Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change

    GLOBAL CHANGE BIOLOGY, Issue 7 2008
    PHILIP A. FAY
    Abstract Climate change is causing measurable changes in rainfall patterns, and will likely cause increases in extreme rainfall events, with uncertain implications for key processes in ecosystem function and carbon cycling. We examined how variation in rainfall total quantity (Q), the interval between rainfall events (I), and individual event size (SE) affected soil water content (SWC) and three aspects of ecosystem function: leaf photosynthetic carbon gain (), aboveground net primary productivity (ANPP), and soil respiration (). We utilized rainout shelter-covered mesocosms (2.6 m3) containing assemblages of tallgrass prairie grasses and forbs. These were hand watered with 16 I×Q treatment combinations, using event sizes from 4 to 53 mm. Increasing Q by 250% (400,1000 mm yr,1) increased mean soil moisture and all three processes as expected, but only by 20,55% (P,0.004), suggesting diminishing returns in ecosystem function as Q increased. Increasing I (from 3 to 15 days between rainfall inputs) caused both positive () and negative () changes in ecosystem processes (20,70%, P,0.01), within and across levels of Q, indicating that I strongly influenced the effects of Q, and shifted the system towards increased net carbon uptake. Variation in SE at shorter I produced greater response in soil moisture and ecosystem processes than did variation in SE at longer I, suggesting greater stability in ecosystem function at longer I and a priming effect at shorter I. Significant differences in ANPP and between treatments differing in I and Q but sharing the same SE showed that the prevailing pattern of rainfall influenced the responses to a given event size. Grassland ecosystem responses to extreme rainfall patterns expected with climate change are, therefore, likely to be variable, depending on how I, Q, and SE combine, but will likely result in changes in ecosystem carbon cycling. [source]


    Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems

    GLOBAL CHANGE BIOLOGY, Issue 9 2007
    M. A. A. ADVIENTO-BORBE
    Abstract Crop intensification is often thought to increase greenhouse gas (GHG) emissions, but studies in which crop management is optimized to exploit crop yield potential are rare. We conducted a field study in eastern Nebraska, USA to quantify GHG emissions, changes in soil organic carbon (SOC) and the net global warming potential (GWP) in four irrigated systems: continuous maize with recommended best management practices (CC-rec) or intensive management (CC-int) and maize,soybean rotation with recommended (CS-rec) or intensive management (CS-int). Grain yields of maize and soybean were generally within 80,100% of the estimated site yield potential. Large soil surface carbon dioxide (CO2) fluxes were mostly associated with rapid crop growth, high temperature and high soil water content. Within each crop rotation, soil CO2 efflux under intensive management was not consistently higher than with recommended management. Owing to differences in residue inputs, SOC increased in the two continuous maize systems, but decreased in CS-rec or remained unchanged in CS-int. N2O emission peaks were mainly associated with high temperature and high soil water content resulting from rainfall or irrigation events, but less clearly related to soil NO3 -N levels. N2O fluxes in intensively managed systems were only occasionally greater than those measured in the CC-rec and CS-rec systems. Fertilizer-induced N2O emissions ranged from 1.9% to 3.5% in 2003, from 0.8% to 1.5% in 2004 and from 0.4% to 0.5% in 2005, with no consistent differences among the four systems. All four cropping systems where net sources of GHG. However, due to increased soil C sequestration continuous maize systems had lower GWP than maize,soybean systems and intensive management did not cause a significant increase in GWP. Converting maize grain to ethanol in the two continuous maize systems resulted in a net reduction in life cycle GHG emissions of maize ethanol relative to petrol-based gasoline by 33,38%. Our study provided evidence that net GHG emissions from agricultural systems can be kept low when management is optimized toward better exploitation of the yield potential. Major components for this included (i) choosing the right combination of adopted varieties, planting date and plant population to maximize crop biomass productivity, (ii) tactical water and nitrogen (N) management decisions that contributed to high N use efficiency and avoided extreme N2O emissions, and (iii) a deep tillage and residue management approach that favored the build-up of soil organic matter from large amounts of crop residues returned. [source]


    On the variability of respiration in terrestrial ecosystems: moving beyond Q10

    GLOBAL CHANGE BIOLOGY, Issue 2 2006
    ERIC A. DAVIDSON
    Abstract Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem-scale substrate supply. For a simple membrane-bound enzymatic system that follows Michaelis,Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half-saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation. [source]


    Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem

    GLOBAL CHANGE BIOLOGY, Issue 2 2005
    Christopher W. Harper
    Abstract Predicted climate changes in the US Central Plains include altered precipitation regimes with increased occurrence of growing season droughts and higher frequencies of extreme rainfall events. Changes in the amounts and timing of rainfall events will likely affect ecosystem processes, including those that control C cycling and storage. Soil carbon dioxide (CO2) flux is an important component of C cycling in terrestrial ecosystems, and is strongly influenced by climate. While many studies have assessed the influence of soil water content on soil CO2 flux, few have included experimental manipulation of rainfall amounts in intact ecosystems, and we know of no studies that have explicitly addressed the influence of the timing of rainfall events. In order to determine the responses of soil CO2 flux to altered rainfall timing and amounts, we manipulated rainfall inputs to plots of native tallgrass prairie (Konza Prairie, Kansas, USA) over four growing seasons (1998,2001). Specifically, we altered the amounts and/or timing of growing season rainfall in a factorial combination that included two levels of rainfall amount (100% or 70% of naturally occurring rainfall quantity) and two temporal patterns of rain events (ambient timing or a 50% increase in length of dry intervals between events). The size of individual rain events in the altered timing treatment was adjusted so that the quantity of total growing season rainfall in the ambient and altered timing treatments was the same (i.e. fewer, but larger rainfall events characterized the altered timing treatment). Seasonal mean soil CO2 flux decreased by 8% under reduced rainfall amounts, by 13% under altered rainfall timing, and by 20% when both were combined (P<0.01). These changes in soil CO2 flux were consistent with observed changes in plant productivity, which was also reduced by both reduced rainfall quantity and altered rainfall timing. Soil CO2 flux was related to both soil temperature and soil water content in regression analyses; together they explained as much as 64% of the variability in CO2 flux across dates under ambient rainfall timing, but only 38,48% of the variability under altered rainfall timing, suggesting that other factors (e.g. substrate availability, plant or microbial stress) may limit CO2 flux under a climate regime that includes fewer, larger rainfall events. An analysis of the temperature sensitivity of soil CO2 flux indicated that temperature had a reduced effect (lower correlation and lower Q10 values) under the reduced quantity and altered timing treatments. Recognition that changes in the timing of rainfall events may be as, or more, important than changes in rainfall amount in affecting soil CO2 flux and other components of the carbon cycle highlights the complex nature of ecosystem responses to climate change in North American grasslands. [source]


    Long-term carbon exchange in a sparse, seasonally dry tussock grassland

    GLOBAL CHANGE BIOLOGY, Issue 10 2004
    John E. Hunt
    Abstract Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long-term mean=646 mm). The vegetation was sparse with total above-ground biomass of only 1410 g m,2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m,2 day,1, and it occurred before mid-summer in both years. On an annual basis, for the dry year, 9 g C m,2 was lost to the atmosphere. During the wet year, 41 g C m,2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled-up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well-watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral-N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m,3) to the driest value obtained (0.04 m3 m,3). Rainfall after periods of drought resulted in large, but short-lived, respiration pulses that were curvilinearly related to the increase in root-zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term. [source]


    Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, China

    HYDROLOGICAL PROCESSES, Issue 10 2010
    Huang Lei
    Abstract Artemisia ordosica is considered as an excellent sand-fixing plant in revegetated desert areas, which plays a pertinent role in stabilizing the mobile dunes and sustaining the desert ecosystems. Stem sap flows of about 10-year-old Artemisia ordosica plants were monitored continuously with heat balance method for the entire growing season in order to understand the water requirement and the effects of environmental factors on its transpiration and growth. Environment factors such as solar radiation, air temperatures, relative humidity, wind speed and precipitation were measured by the eddy covariance. Diurnal and seasonal variations of sap flow rate with different stem diameters and their correlation with meteorological factors and reference evapotranspiration were analysed. At the daily time scale, there was a significantly linear relationship between sap flow rate and reference evapotranspiration with a correlation coefficient of R2 = 0·6368. But at the hourly time scale, the relationship of measured sap flow rate and calculated reference evapotranspiration (ET0) was affected by the precipitation. A small precipitation would increase the sap flow and the ET0; however, when the precipitation is large, the sap flow and ET0 decrease. Leaf area index had a coincident variation with soil water content; both were determined by the precipitation, and meteorological factors were the most significant factors that affected the sap flow of Artemisia ordosica in the following order: solar radiation > vapour pressure deficit > relative humidity > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season would provide us an accurate estimation of the transpiration of Artemisia ordosica and rational water-carrying capacity of sand dunes in the revegetated desert areas. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Predicting unit plot soil loss in Sicily, south Italy

    HYDROLOGICAL PROCESSES, Issue 5 2008
    V. Bagarello
    Abstract Predicting soil loss is necessary to establish soil conservation measures. Variability of soil and hydrological parameters complicates mathematical simulation of soil erosion processes. Methods for predicting unit plot soil loss in Sicily were developed by using 5 years of data from replicated plots. At first, the variability of the soil water content, runoff, and unit plot soil loss values collected at fixed dates or after an erosive event was investigated. The applicability of the Universal Soil Loss Equation (USLE) was then tested. Finally, a method to predict event soil loss was developed. Measurement variability decreased as the mean increased above a threshold value but it was low also for low values of the measured variable. The mean soil loss predicted by the USLE was lower than the measured value by 48%. The annual values of the soil erodibility factor varied by seven times whereas the mean monthly values varied between 1% and 244% of the mean annual value. The event unit plot soil loss was directly proportional to an erosivity index equal to , being QRRe the runoff ratio times the single storm erosion index. It was concluded that a relatively low number of replicates of the variable of interest may be collected to estimate the mean for both high and particularly low values of the variable. The USLE with the mean annual soil erodibility factor may be applied to estimate the order of magnitude of the mean soil loss but it is not usable to estimate soil loss at shorter temporal scales. The relationship for estimating the event soil loss is a modified version of the USLE-M, given that it includes an exponent for the QRRe term. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Water fluxes at a fluctuating water table and groundwater contributions to wheat water use in the lower Yellow River flood plain, China

    HYDROLOGICAL PROCESSES, Issue 6 2007
    Jianfeng Yang
    Abstract Capillary upflow from and deep percolation to a water table may be important in crop water supply in irrigated areas of the lower Yellow River flood plain, north China. These fluxes at the water table and the variations of the capillary upflow in relation to crop evapotranspiration need to be investigated to quantify the effect of a water table on soil water balance and to improve agricultural water management. A large weighing lysimeter was used to determine daily crop evapotranspiration, daily capillary upflow from and daily percolation to a fluctuating water table during a rotation period with wheat growing in a dry season and maize in a rainy season. The water table depth varied in the range 0·7,2·3 m during the maize growth period and 1·6,2·4 m during the wheat growth period. Experimental results showed that the capillary upflow and the percolation were significant components of the soil water balance. Three distinctly different phases for the water fluxes at the water table were observed through the rotation period: water downward period, the period of no or small water fluxes, and water upward period. It implied that the temporal pattern of these water fluxes at the water table was intimately associated with the temporal distribution of rainfall through the rotation period. An empirical equation was determined to estimate the capillary upflow in relation to wheat evapotranspiration and root zone soil water content for local irrigation scheduling. Coupled with the FAO-Penman,Monteith equation, the equation offers a fast and low cost solution to assess the effect of capillary upflow from a water table on wheat water use. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Laboratory experimental check of a conceptual model for infiltration under complex rainfall patterns

    HYDROLOGICAL PROCESSES, Issue 3 2006
    Florisa Melone
    Abstract Experimental evidence of the accuracy of the model proposed by Corradini et al. (1997, Journal of Hydrology192: 104,124) for local infiltration,redistribution,reinfiltration in homogeneous soils is given. The model provides infiltration through the time evolution of the soil water content vertical profile, which is described by an ordinary differential equation in any stage of a given rainfall event. A nearly horizontal laboratory slope was used for the experiments performed over both a medium- and a coarse-textured soil. During each experiment characterized by a complex rainfall pattern, the soil water content , at different depths was continuously monitored using the time-domain reflectometry method. Our results indicate that the model simulated the experimental vertical profiles of , accurately, particularly during the infiltration and reinfiltration stages separated by a rainfall hiatus with redistribution of soil water. These results indicate the reliability of the model in computing the local effective rainfall for hydrological response. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water

    HYDROLOGICAL PROCESSES, Issue 6 2003
    A. Sugimoto
    Abstract Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its ,18O showed large interannual variation depending on the amount of summer rainfall. The soil water ,18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the ,18O of soil water increased due to percolation of summer rain with high ,18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the ,18O because of the low ,18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra-annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Concrete canal lining cracking in low to medium plastic soils,

    IRRIGATION AND DRAINAGE, Issue 2 2002
    H. Rahimi
    sol plastique; gonflement; revêtement bétonique; Iran Abstract Failure of concrete irrigation canal linings in the form of cracking, rupture, uplifting and opening of joints, causes loss of water and money in many countries. Following the appearance of extensive cracking of concrete linings in one of the Shoeybieh sugar cane industry farms in the Khoozestan province of Iran, extensive research work was conducted to identify the main causes. In this paper, the final results of the research are presented. The testing program consisted of laboratory as well as field tests, including identification, chemical and mechanical tests of soil samples taken from the borrow pits and canal embankments. Dispersivity tests were performed using pin-hole and chemical methods. Swelling tests were conducted using the ASTM standard and ISSMFE method. The field test includes measurement of deformations of the concrete lining and embankment of an actual lined canal resulting from the filling of the canal with water. The canal was 60 m in length. The deformations were recorded by surveying the elevations of steel bars driven to different depths under the canal lining and at different points in the canal and its embankment sections. The results of laboratory tests showed the soil to have low to medium plasticity with a classification of CL-ML, having less than 1% soluble content, and being nondispersive. Swelling tests conducted by the ASTM and ISSMFE methods showed completely different results. The ISSMFE method resulted in a high free swell potential, while the ASTM method indicated a low to medium potential. The results of full-scale field tests were all in favor of the ISSMFE method. The greatest difference between the results of the two methods was found to be due to the different compaction methods used during construction of the canal, as well as the moisture content of the soil sample being prepared for the swell tests. The flocculent structure and lower compaction water content of soil samples in the ISSMFE method resulted in much higher free swell. The similarity between compaction methods used in the field and the static effort used in the ISSMFE method, as well as very low soil water content of the canal embankments during lining operations, were found to be the main reasons for swelling of the soil and the eventual cracking of the concrete linings. Copyright © 2002 John Wiley & Sons, Ltd. RÉSUMÉ L'écroulement du revêtement bétonique des canaux d'irrigation en forme de fissure, de la rupture, de la sous-pression et de l'ouverture des joints, est la cause de la perte d' eau et par conséquence des fonds publics de plusieurs pays dans le monde entier. Après avoir observé ce phénomène dans des canaux d'irrigation d'un grand projet de canne à sucre à Shoeybieh dans la région de Khozestan, située au sud de l'Iran, une équipe de recherche a été engagée pour trouver les causes principales de cetécroulement. Cet article présente les résultats finaux de cette recherche. Le programme consiste de deux types d'essai, en laboratoire et sur le terrain. Les échantillons du sol pour l'essai mécanique et chimique ont été pris dans des emprunts de terre et la digue du canal. Les essais de dispersivité ont été faits par les méthodes de pin-hole et de chimique. La méthode del ISSMFE et la standard del ASTM ont été utilisés pour les essais de gonflement du sol. Le mesurage de la déformation d'un canal revêté en béton et aussi de digue du canal a été fait par rempliz le canal avee de l'eau. Le canal avait une longueur de 60 m. La déformation a été observée en examinant les élévations à plusieurs points sur la profondeur du canal en dessous de la partie revêtée et aussi la digue du canal par un instrument spécifique. Les résultats des essais de laboratoire montrent que les sols qui ont une plasticité entre petite et moyenne situés dans la classification de CL-ML ayant moins d'un pour cent de contenude soluble sont non-dispersifes. Les essais de gonflement par les méthodes de l'ASTM et l'ISSME montrent des résultats tout à fait différents. La méthode ISSMFE montre un potentiel de gonflement assez élevé, tandis que la méthode ASTM montre un potentiel entre petit et moyen. Les résultats des essais en champs d'étude confirme la méthode ISSMFE. La plus grande différence entre le résultat de deux méthodes est à cause d'usage de plusieurs méthodes de compaction dans la période de la construction du canal. La structure floculée du sol ayant une humidité moins compactée dans la méthode ISSMFE montre un gonflement plus élevée du sol. Les méthodes similaires de compaction utilisées dans le champs d'étude et énergie statique utilisée par la méthode ISSFE, et aussi une petite humidité de digue du canal en période de revêtement sont les causes principales de gonflement et éventuellement de fissure. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Drip Irrigation Frequency: The Effects and Their Interaction with Nitrogen Fertilization on Sandy Soil Water Distribution, Maize Yield and Water Use Efficiency Under Egyptian Conditions

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2008
    S. E. El-Hendawy
    Abstract Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split-split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha,1), and two maize hybrids (three-way cross 310 and single cross 10) as the main-plot, split-plot, and split-split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha,1 was not statistically different from that at 380 kg N ha,1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha,1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha,1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100-grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha,1. In order to improve the WUE and grain yield for drip-irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha,1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated. [source]


    Impact of Water Stress on Maize Grown Off-Season in a Subtropical Environment

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2007
    C. M. T. Soler
    Abstract During the last decade, the production of off-season maize has increased in several regions of Brazil. Growing maize during this season, with sowing from January through April, imposes several climatic risks that can impact crop yield. This is mainly caused by the high variability of precipitation and the probability of frost during the reproduction phases. High production risks are also partially due to the use of cultivars that are not adapted to the local environmental conditions. The goal of this study was to evaluate crop growth and development and associated yield, yield components and water use efficiency (WUE) for maize hybrids with different maturity ratings grown off-season in a subtropical environment under both rainfed and irrigated conditions. Three experiments were conducted in 2001 and 2002 in Piracicaba, state of São Paulo, Brazil with four hybrids of different maturity duration, AG9010 (very short season), DAS CO32 and Exceler (short season) and DKB 333B (normal season). Leaf area index (LAI), plant height and dry matter were measured approximately every 18 days. Under rainfed conditions, the soil water content in the deeper layers was reduced, suggesting that the extension of the roots into these layers was a response to soil water limitations. On average, WUE varied from 1.45 kg m,3 under rainfed conditions to 1.69 kg m,3 under irrigated conditions during 2001. The average yield varied from 4209 kg ha,1 for the hybrids grown under rainfed conditions to 5594 kg ha,1 under irrigated conditions during 2001. Yield reductions under rainfed conditions were affected by the genotype. For the hybrid DKB 333B with a normal maturity, yield was reduced by 25.6 % while the short maturity hybrid Exceler was the least impacted by soil water limitations with a yield reduction of only 8.4 %. To decrease the risk of yield loss, the application of supplemental irrigation should be considered by local farmers, provided that this practice is not restricted by either economic considerations or the availability of sufficient water resources. [source]