Soil Water Conditions (soil + water_condition)

Distribution by Scientific Domains


Selected Abstracts


Phytosociological study on steppe vegetation in the vicinity of Kharkiv, Ukraine

GRASSLAND SCIENCE, Issue 2 2006
Yunxiang Cheng
Abstract To classify the steppe vegetation of the natural grasslands in the Ukraine from a viewpoint of phytosociology, vegetation investigation was carried out in three relatively homogeneous sites in Kharkiv Province. Plant communities were classified by their characteristic species and differential species on the basis of the floristic composition into two communities, Stipa capillata,Festuca sulcata community and Poa angustifolia,F. sulcata community, and below four lower units. Using the data of three phases of soil in each of the three sites and the detrended correspondence analysis ordination technique, the score of axis 1 correlated most closely with geographical gradient which reflected the soil water condition. This result shows that the S. capillata,F. sulcata community is more tolerant to a dry habitat of the steppe vegetation of the Ukraine. [source]


Water-Yield Reduction After Afforestation and Related Processes in the Semiarid Liupan Mountains, Northwest China,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2008
Yanhui Wang
Abstract:, The increase of coverage of forest/vegetation is imperative to improve the environment in dry-land areas of China, especially for protecting soil against serious erosion and sandstorms. However, inherent severe water shortages, drought stresses, and increasing water use competition greatly restrict the reforestation. Notably, the water-yield reduction after afforestation generates intense debate about the correct approach to afforestation and forest management in dry-land areas. However, most studies on water-yield reduction of forests have been at catchment scales, and there are few studies of the response of total evapotranspiration (ET) and its partitioning to vegetation structure change. This motivates us to learn the linkage between hydrological processes and vegetation structure in slope ecosystems. Therefore, an ecohydrological study was carried out by measuring the individual items of water balance on sloping plots covered by different vegetation types in the semiarid Liupan Mountains of northwest China. The ratio of precipitation consumed as ET was about 60% for grassland, 93% for shrubs, and >95% for forestland. Thus, the water yield was very low, site-specific, and sensitive to vegetation change. Conversion of grassland to forest decreased the annual water yield from slope by 50-100 mm. In certain periods, the plantations at lower slopes even consumed the runon from upper slopes. Reducing the density of forests and shrubs by thinning was not an efficient approach to minimize water use. Leaf area index was a better indicator than plant density to relate ET to vegetation structure and to evaluate the soil water carrying capacity for vegetation (i.e., the maximum amount of vegetation that can be supported by the available soil water for an extended time). Selecting proper vegetation types and plant species, based on site soil water condition, may be more effective than the forest density regulation to minimize water-yield reduction by vegetation coverage increase and notably by reforestation. Finally, the focuses in future research to improve the forest-water relations in dry-land areas are recommended as follows: vegetation growth dynamics driven by environment especially water conditions, coupling of ecological and hydrological processes, further development of distributed ecohydrological models, quantitative relation of eco-water quota of ecosystems with vegetation structures, multi-scaled evaluation of soil water carrying capacity for vegetation, and the development of widely applicable decision support tools. [source]


Experimental study of rill bank collapse

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2007
Jovan R. Stefanovic
Abstract Rill bank collapse is an important component in the adjustment of channel morphology to changes in discharge and sediment flux. Sediment inputs from bank collapse cause abrupt changes in flow resistance, flow patterns and downstream sediment concentrations. Generally, bank retreat involves gradual lateral erosion, caused by flow shear stress, and sudden bank collapse, triggered by complex interactions between channel flow and bank and soil water conditions. Collapse occurs when bank height exceeds the critical height where gravitational forces overcome soil shear strength. An experimental study examined conditions for collapse in eroding rill channels. Experiments with and without a deep water table were carried out on a meandering rill channel in a loamy sand and sandy loam in a laboratory flume under simulated rainfall and controlled runon. Different discharges were used to initiate knickpoint and rill incision. Soil water dynamics were monitored using microstandpipes, tensiometers and time domain reflectometer probes (TDR probes). Bank collapse occurred with newly developed or rising pre-existing water tables near rill banks, associated with knickpoint migration. Knickpoint scour increased effective bank height, caused positive pore water pressure in the bank toe and reduced negative pore pressures in the unsaturated zone to near zero. Matric tension in unsaturated parts of the bank and a surface seal on the ,interrill' zone behind the bank enhanced stability, while increased effective bank height and positive pore water pressure at the bank toe caused instability. With soil water contents >35 per cent (sandy loam) and >23 per cent (loamy sand), critical bank heights were 0·11,0·12 m and 0·06,0·07 m, respectively. Bank toe undercutting at the outside of the rill bends also triggered instability. Bank displacement was quite different on the two soils. On the loamy sand, the failed block slid to the channel bed, revealing only the upper half of the failure plane, while on the sandy loam the failed block toppled forwards, exposing the failure plane for the complete bank height. This study has shown that it is possible to predict location, frequency and magnitude of the rill bank collapse, providing a basis for incorporation into predictive models for hillslope soil loss or rill network development. Copyright © 2006 John Wiley & Sons, Ltd. [source]


A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization

HYDROLOGICAL PROCESSES, Issue 10 2001
Roy C. Sidle
Abstract Preferential flow paths are known to be important conduits of subsurface stormflow in forest hillslopes. Earlier research on preferential flow paths focused on vertical transport; however, lateral transport is also evident in steep forested slopes underlain by bedrock or till. Macropores consisting of decayed and live roots, subsurface erosion, surface bedrock fractures, and animal burrows form the basis of a ,backbone' for lateral preferential flow in such sites. Evidence from field studies in Japan indicates that although individual macropore segments are generally <0·5 m in length, they have a tendency to self-organize into larger preferential flow systems as sites become wetter. Staining tests show clear evidence of interconnected macropore flow segments, including: flow within decayed root channels and subsurface erosion cavities; flow in small depressions of the bedrock substrate; fracture flow in weathered bedrock; exchange between macropores and mesopores; and flow at the organic horizon,mineral soil interface and in buried pockets of organic material and loose soil. Here we develop a three-dimensional model for preferential flow systems based on distributed attributes of macropores and potential connecting nodes (e.g. zones of loose soil and buried organic matter). We postulate that the spatially variable and non-linear preferential flow response observed at our Japan field site, as well as at other sites, is attributed to discrete segments of macropores connecting at various nodes within the regolith. Each node is activated by local soil water conditions and is influenced strongly by soil depth, permeability, pore size, organic matter distribution, surface and substrate topography, and possibly momentum dissipation. This study represents the first attempt to characterize the spatially distributed nature of preferential flow paths at the hillslope scale and presents strong evidence that these networks exhibit complex system behaviour. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Differences in the structure, growth and survival of Parasenecio yatabei ramets with contrasting water relations on the slope of a stream bank

PLANT SPECIES BIOLOGY, Issue 2 2009
HAJIME TOMIMATSU
Abstract Parasenecio yatabei (Asteraceae), a summer-green perennial herb, is widely distributed on sloping mountain stream banks in cool-temperate zone forests of Japan. We investigated the growth pattern, leaf longevity and leaf water relations of vegetatively independent plants (ramets) growing in two contrasting soil water conditions, that is, upper and lower stream banks (U ramets and L ramets, respectively). The objective of the present study was to clarify the physiological and morphological responses of the ramets to soil water conditions. Dry matter allocation to subterranean parts was higher in U ramets than in L ramets. The U ramet leaves survived for approximately 2 months longer than L ramet leaves. The ratio of subterranean part to aerial part dry matter was greater in U ramets than L ramets. Leaf mass per leaf area (LMA) tended to be greater in U ramets than L ramets throughout the growing season. The leaf bulk modulus of elasticity at full hydration was significantly higher in U ramets. Thus, ramet growth patterns and morphological traits varied with changing soil water conditions. The greater longevity of U ramet leaves may play a role in compensating for the reduced annual net carbon gain caused by lower photosynthetic activity. U ramets growing in environments with less water availability achieved high water-use efficiency by a high passive water absorption capacity via a progressed root system and high productivity via longer leaf longevity with higher LMA and elasticity. Therefore, P. yatabei growing along mountain streams could have the ability to colonize the upper bank through higher survivorship based on these traits. [source]