Soil Water Availability (soil + water_availability)

Distribution by Scientific Domains


Selected Abstracts


Temporal and shrub adaptation effect on soil microbial functional diversity in a desert system

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2009
V. Saul-Tcherkas
Summary The Negev Desert is characterized by spatial and temporal patterns of resource distribution, in which soil biota are considered to be among the most sensitive biological characteristics, easily influenced by changes related to soil and abiotic factors. Soil water availability and organic matter are among the most important factors, acting as triggers that determine the length of the period of activity. The main source of organic matter in this xeric environment is input from annual and perennial shrubs. In order to persist and propagate in this xeric environment, the plants have developed different ecophysiological adaptations (e.g. the excretion of salt (Reaumuria negevensis) and chemical compounds (Artemisia sieberi) via the leaves). We found that the values of soil moisture obtained for soil samples collected in the vicinity of R. negevensis were larger than for samples collected in the vicinity of Noaea mucronata and A. sieberi and in the open area. The maximum values of CO2 evolution, microbial biomass and Shannon index (H,) were obtained for the samples collected from the vicinity of N. mucronata. Therefore, we assume that the vicinity of N. mucronata afforded the best conditions for the soil bacterial community. In the Negev Desert, we also found that water availability and pulses of rain compared with frequent rainfall influenced CO2 evolution, microbial biomass, qCO2 and the Shannon index (H,). The differences in water amount and availability between the two rainy seasons caused larger values in most of the properties during the first four seasons (December 2005,November 2006) compared with the last four seasons (December 2006,November 2007) for most of the samples. [source]


Ericaceous shrubs on abandoned block-cut peatlands: implications for soil water availability and Sphagnum restoration

ECOHYDROLOGY, Issue 4 2009
Kegan K Farrick
Abstract Following harvesting by manual block-cut methods and subsequent abandonment, Cacouna bog has undergone a natural vegetation succession, with ericaceous shrubs covering more than 90% of the surface. The abundance of shrubs plays a major role in the soil water flux and availability at the site, impacting Sphagnum regeneration. From June 1 to August 22, 2007, field measurements indicate that transpiration represented the largest water loss from the shrubs at 1·7 mm day,1, comprising 142 mm (42%) of rainfall, compared to 93 mm of evaporation (28%) from bare soil. The rainfall interception from the canopy (62 mm) and litter (15 mm) accounted for 23% of seasonal rainfall. Thus after transpiration and interception losses are accounted for, only 115 mm of the 334 mm of rain (34%) remained available for other processes (recharge/soil evaporation). In the field, the litter layer prevented 17 mm from being lost over the summer as it reduced evaporation by 18%. Laboratory experiments using intact soil monoliths with and without shrubs and litter indicate that at depths below 10 cm the water content from the shrub monoliths decreased 27% versus 20% in the bare peat monoliths because of root water uptake. As a management prescription, raising the water table within 20 cm of the surface would provide water to the most active root uptake zones, reducing the need for extraction from the upper 10 cm of the peat. At this level sufficient water can be supplied to the surface through capillary rise, providing adequate water for the reestablishment/survival of Sphagnum. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Persistent effects of a discrete warming event on a polar desert ecosystem

GLOBAL CHANGE BIOLOGY, Issue 10 2008
J. E. BARRETT
Abstract A discrete warming event (December 21, 2001,January 12, 2002) in the McMurdo Dry Valleys, Antarctica, enhanced glacier melt, stream flow, and melting of permafrost. Effects of this warming included a rapid rise in lake levels and widespread increases in soil water availability resulting from melting of subsurface ice. These increases in liquid water offset hydrologic responses to a cooling trend experienced over the previous decade and altered ecosystem properties in both aquatic and terrestrial ecosystems. Here, we present hydrological and meteorological data from the McMurdo Dry Valleys Long Term Ecological Research project to examine the influence of a discrete climate event (warming of >2 °C) on terrestrial environments and soil biotic communities. Increases in soil moisture following this event stimulated populations of a subordinate soil invertebrate species (Eudorylaimus antarcticus, Nematoda). The pulse of melt-water had significant influences on Taylor Valley ecosystems that persisted for several years, and illustrates that the importance of discrete climate events, long recognized in hot deserts, are also significant drivers of soil and aquatic ecosystems in polar deserts. Thus, predictions of Antarctic ecosystem responses to climate change which focus on linear temperature trends may miss the potentially significant influence of infrequent climate events on hydrology and linked ecological processes. [source]


Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem

GLOBAL CHANGE BIOLOGY, Issue 7 2008
GEORG WOHLFAHRT
Abstract The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m,2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3,4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed , especially since arid and semiarid biomes make up >30% of Earth's land surface. [source]


Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?

GLOBAL CHANGE BIOLOGY, Issue 12 2003
Peter Convey
Abstract Abiotic features of Antarctic terrestrial habitats, particularly low temperatures and limited availability of liquid water, strongly influence the ecophysiology and life histories of resident biota. However, while temperature regimes of a range of land microhabitats are reasonably well characterized, much less is known of patterns of soil water stress, as current technology does not allow measurement at the required scale. An alternative approach is to use the water status of individual organisms as a proxy for habitat water status and to sample over several years from a population to identify seasonal or long-term patterns. This broad generalization for terrestrial invertebrates was tested on arthropods in the maritime Antarctic. We present analyses of a long-term data set of body water content generated by monthly sampling for 8,11 years of seven species of soil arthropods (four species of Acari, two Collembola and one Diptera) on maritime Antarctic Signy Island, South Orkney Islands. In all species, there was considerable within- and between-sample variability. Despite this, clear seasonal patterns were present in five species, particularly the two collembolans and a prostigmatid mite. Analyses of monthly water content trends across the entire study period identified several statistically significant trends of either increase or decrease in body water content, which we interpret in the context of regional climate change. The data further support the separation of the species into two groups as follows: firstly, the soft-bodied Collembola and Prostigmata, with limited cuticular sclerotization, which are sensitive to changes in soil moisture and are potentially rapid sensors of microhabitat water status, secondly, more heavily sclerotized forms such as Cryptostigmata (=Oribatida) and Mesostigmata mites, which are much less sensitive and responsive to short-term fluctuations in soil water availability. The significance of these findings is discussed and it is concluded that annual cycles of water content were driven by temperature, mediated via radiation and precipitation, and constituted reliable indicators of habitat moisture regimes. However, detailed ecophysiological studies are required on particular species before such information can be used to predict over long timescales. [source]


Above- and below-ground responses of C3,C4 species mixtures to elevated CO2 and soil water availability

GLOBAL CHANGE BIOLOGY, Issue 3 2003
JUSTIN D. DERNER
Abstract We evaluated the influences of CO2[Control, , 370 µmol mol,1; 200 µmol mol,1 above ambient applied by free-air CO2 enrichment (FACE)] and soil water (Wet, Dry) on above- and below-ground responses of C3 (cotton, Gossypium hirsutum) and C4 (sorghum, Sorghum bicolor) plants in monocultures and two density mixtures. In monocultures, CO2 enrichment increased height, leaf area, above-ground biomass and reproductive output of cotton, but not sorghum, and was independent of soil water treatment. In mixtures, cotton, but not sorghum, above-ground biomass and height were generally reduced compared to monocultures, across both CO2 and soil water treatments. Density did not affect individual plant responses of either cotton or sorghum across the other treatments. Total (cotton + sorghum) leaf area and above-ground biomass in low-density mixtures were similar between CO2 treatments, but increased by 17,21% with FACE in high-density mixtures, due to a 121% enhancement of cotton leaf area and a 276% increase in biomass under the FACE treatment. Total root biomass in the upper 1.2 m of the soil was not influenced by CO2 or by soil water in monoculture or mixtures; however, under dry conditions we observed significantly more roots at lower soil depths (> 45 cm). Sorghum roots comprised 81,85% of the total roots in the low-density mixture and 58,73% in the high-density mixture. CO2 -enrichment partly offset negative effects of interspecific competition on cotton in both low- and high-density mixtures by increasing above-ground biomass, with a greater relative increase in the high-density mixture. As a consequence, CO2 -enrichment increased total above-ground yield of the mixture at high density. Individual plant responses to CO2 enrichment in global change models that evaluate mixed plant communities should be adjusted to incorporate feedbacks for interspecific competition. Future field studies in natural ecosystems should address the role that a CO2 -mediated increase in C3 growth may have on subsequent vegetation change. [source]


Spatial patterns of desert annuals in relation to shrub effects on soil moisture

JOURNAL OF VEGETATION SCIENCE, Issue 2 2010
J. Li
Abstract Questions: What are the effects of a shrub (Haloxylon ammodendron) on spatial patterns of soil moisture in different seasons? How does productivity of understorey annuals respond to these effects? Are such effects always positive for annuals under shrubs? Location: South Gurbantunggut Desert, northwest China. Methods: Using geostatistics, we explored seasonal patterns of topsoil moisture in a 12 × 9-m plot over the growing season. To determine spatial patterns of understorey annuals in response to H. ammodendron presence, biomass of annuals was recorded in four 0.2 × 5.0-m transects from the centre of a shrub to the space between shrubs (interspace). We also investigated vertical distribution of root biomass for annuals and soil moisture dynamics across soil profiles in shrub-canopied areas and interspaces. Results: Topsoil moisture changed from autocorrelation in the wet spring to random structure in the dry season, while soil moisture below 20 cm was higher in shrub-canopied areas. Across all microhabitats, soil moisture in upper soil layers was higher than in deeper soil layers during the spring wet season, but lower during summer drought. Topsoil was close to air-dry during the dry season and developed a ,dry sand layer' that reduced evaporative loss of soil water from deeper layers recharged by snowmelt in spring. Aboveground biomass of understorey annuals was lowest adjacent to shrub stems and peaked at the shrub margin, forming a ,ring' of high herbaceous productivity surrounding individual shrubs. To acclimate to drier conditions, annuals in interspaces invested more root biomass in deeper soil with a root/shoot ratio (R/S) twice that in canopied areas. Conclusions: Positive and negative effects of shrubs on understorey plants in arid ecosystems are commonly related to nature of the environmental stress and tested species. Our results suggest there is also microhabitat-dependence in the Gurbantunggut Desert. Soil water under H. ammodendron is seasonally enriched in topsoil and deeper layers. Understorey annuals respond to the effect of shrubs on soil water availability with lower R/S and less root biomass in deeper soil layers and develop a ,ring' of high productivity at the shrub patch margin where positive and negative effects of shrubs are balanced. [source]


Effects of fire severity in a north Patagonian subalpine forest

JOURNAL OF VEGETATION SCIENCE, Issue 1 2005
Thomas Kitzberger
Abstract. Question: What is the relative importance of fire-induced canopy mortality, soil burning and post-fire herbivory on tree seedling performance? Location: Subalpine Nothofagus pumilio forests at Challhuaco valley (41°13'S, 71°19'W), Nahuel Huapi National Park, Argentina. Methods: We fenced and transplanted soils of three burning severities along a fire severity gradient produced by a fire in 1996. Over two growing seasons we monitored soil water, direct incoming solar radiation, seedling survival, final seedling total biomass and root/shoot ratio. Additionally, we assessed severity-related changes in soil properties. Results: Incoming radiation (an indicator of the amount of canopy cover left by the fire) was the primary factor influencing spring and summer top soil water availability, first and second-year seedling survival and seedling growth. While seedling survival and soil water content were negatively affected by increased radiation, seedling final biomass was highest in very open microsites. Burned soils showed lower water holding capacity and soil carbon; however these changes did not affect topsoil water, and, contrary to expectation, there was a slight tendency toward higher seedling survival on more heavily burned soils. Herbivory significantly reduced seedling survival, but only under high-radiation conditions. While the effect of radiation on final seedling biomass was not affected by herbivory, R/S ratios were significantly reduced by herbivory in high radiation micro sites. Conclusions: Despite inducing faster aerial growth, increased radiation and herbivory in severely burned sites may effectively prevent post-fire regeneration in north Patagonian subalpine forest where seed sources are not limiting. [source]


Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil

NEW PHYTOLOGIST, Issue 3 2010
Tāmara Thaiz Santana Lima
Summary ,Fine root dynamics is widely recognized as an important biogeochemical process, but there are few data on fine root growth and its response to soil resource availability, especially for tropical forests. ,We evaluated the response of fine root dynamics to altered availability of soil water and nutrients in a 20-yr-old forest regrowth in eastern Amazonia. In one experiment the dry season reduction in soil moisture was alleviated by irrigation. In the other experiment, nutrient supply was reduced by litter removal. We used the ingrowth core technique to measure fine root mass growth, length growth, mortality and specific root length. ,Dry-season irrigation had no significant effect on mass and length of live and dead roots, whereas litter removal reduced mass and length of live roots. For both irrigation and litter removal experiments, root growth was significantly greater in the dry season than in the wet season. ,Increased root growth was associated with decreased soil water availability. However, root growth did not increase in response to nutrient reduction in litter removal plots. Overall, our results suggest that belowground allocation may differ according to the type of soil resource limitation. [source]


Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event

PHYSIOLOGIA PLANTARUM, Issue 4 2005
Ann Milbau
An experiment was performed to elucidate interspecific differences in survival time of grass species subjected to an extreme climatic event. We exposed eight grass species to a simulated heat wave in the field (,free air' temperature increase at 11°C above ambient) combined with drought. We determined whether interspecific differences in survival time were related to the responses of the species to the imposed stress or could be explained by their ecophysiological or morphological characteristics in unstressed conditions. Surprisingly, there was no effect of specific leaf area, but species with a higher total leaf area survived longer. This may arise from a greater water reserve in the plant as a whole, which could delay the desiccation of the meristem, or from reduced evaporation due to a higher leaf area index. Species in which the decrease in light-saturated stomatal conductance (gs) and photosynthetic CO2 uptake rate (Amax) was strongly related to the decrease in soil water availability (measured as soil relative water content and stress duration) survived longer than species in which gs and Amax likewise declined but responded more to daily fluctuations in irradiance, temperature, and vapor pressure deficit during the heat wave. We, therefore, hypothesize that interspecific differences in stress survival time might be related to the extent to which stomata react to changes in soil water conditions relatively to changes in other environmental and physiological factors. The results suggest that resistance to extremes is governed by other mechanisms than resistance to moderate drought. [source]


Seasonal variation in ,13C and ,18O of cellulose from growth rings of Pinus radiata

PLANT CELL & ENVIRONMENT, Issue 11 2002
M. M. Barbour
Abstract Seasonal variation in ,13C and ,18O of cellulose (,13Cc and ,18Oc) was measured within two annual rings of Pinus radiata growing at three sites in New Zealand. In general, both ,13Cc and ,18Oc increased to a peak over summer. The three sites differed markedly in annual water balance, and these differences were reflected in ,13Cc and ,18Oc. Average ,13Cc and ,18Oc from each site were positively related, so that the driest site had the most enriched cellulose. ,13Cc and ,18Oc were also related within each site, although both the slope and the closeness of fit of the relationship varied between sites. Supporting the theory, the site with the lowest average relative humidity also had the greatest change in ,18Oc, change in ,13Cc. Specific climatic events, such as drought or high rainfall, were recorded as a peak or a trough in enrichment, respectively. These results suggest that seasonal and between-site variation in ,13Cc and ,18Oc are driven by the interaction between variation in climatic conditions and soil water availability, and plant response to this variation. [source]


Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats

PLANT CELL & ENVIRONMENT, Issue 12 2001
J. Cavender-Bares
Abstract We investigated the hydraulic properties in relation to soil moisture, leaf habit, and phylogenetic lineage of 17 species of oaks (Quercus) that occur sympatrically in northern central Florida (USA). Leaf area per shoot increased and Huber values (ratio of sapwood area to leaf area) decreased with increasing soil moisture of species' habitats. As a result, maximum hydraulic conductance and maximum transpiration were positively correlated with mean soil moisture when calculated on a sapwood area basis, but not when calculated on a leaf area basis. This reveals the important role that changes in allometry among closely related species can play in co-ordinating water transport capacity with soil water availability. There were significant differences in specific conductivity between species, but these differences were not explained by leaf habit or by evolutionary lineage. However, white oaks had significantly smaller average vessel diameters than red oaks or live oaks. Due to their lower Huber values, maximum leaf specific conductivity (KL) was higher in evergreen species than in deciduous species and higher in live oaks than in red oaks or white oaks. There were large differences between species and between evolutionary lineages in freeze,thaw-induced embolism. Deciduous species, on average, showed greater vulnerability to freezing than evergreen species. This result is strongly influenced by evolutionary lineage. Specifically, white oaks, which are all deciduous, had significantly higher vulnerability to freezing than live oaks (all evergreen) and red oaks, which include both evergreen and deciduous species. These results highlight the importance of taking evolutionary lineage into account in comparative physiological studies. [source]