Home About us Contact | |||
Soil Organisms (soil + organism)
Selected AbstractsSoil Organism and Plant Introductions in Restoration of Species-Rich Grassland CommunitiesRESTORATION ECOLOGY, Issue 2 2009Paul Kardol Abstract Soil organisms can strongly affect competitive interactions and successional replacements of grassland plant species. However, introduction of whole soil communities as management strategy in grassland restoration has received little experimental testing. In a 5-year field experiment at a topsoil-removed ex-arable site (receptor site), we tested effects of (1) spreading hay and soil, independently or combined, and (2) transplanting intact turfs on plant and soil nematode community development. Material for the treatments was obtained from later successional, species-rich grassland (donor site). Spreading hay affected plant community composition, whereas spreading soil did not have additional effects. Plant species composition of transplanted turfs became less similar to that in the donor site. Moreover, most plants did not expand into the receiving plots. Soil spreading and turf transplantation did not affect soil nematode community composition. Unfavorable soil conditions (e.g., low organic matter content and seasonal fluctuations in water level) at the receptor site may have limited plant and nematode survival in the turfs and may have precluded successful establishment outside the turfs. We conclude that introduction of later successional soil organisms into a topsoil-removed soil did not facilitate the establishment of later successional plants, probably because of the "mismatch" in abiotic soil conditions between the donor and the receptor site. Further research should focus on the required conditions for establishment of soil organisms at restoration sites in order to make use of their contribution to grassland restoration. We propose that introduction of organisms from "intermediate" stages will be more effective as management strategy than introduction of organisms from "target" stages. [source] Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinationsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2004Cornelis A. M. van Gestel Abstract Toxicity of cadmium to Folsomia candida was determined in soils at different pHs (3.5, 5.0, and 6.5). The Langmuir sorption constant (KL), based on pore-water or water-extractable concentrations, showed a pH-related increase of cadmium sorption that was most pronounced when using free Cd2+ ion activities ({Cd2+}s). Two-species Langmuir isotherms that used total cadmium concentration ([Cd]) or {Cd2+} and pH in the water-extractable fractions gave the best description of cadmium sorption on all soils together. Cadmium concentrations causing 50% reduction of growth and reproduction (median effective concentrations [EC50s]) differed by a factor of 4.5 to 20 when based on total soil concentrations and increased with increasing pH. However, when based on water-extractable or pore-water [Cd] or {Cd2+}, EC50s decreased with increasing pH, but differences between soils were still a factor of 4.5 to 32. The EC50s differed by less than a factor of 2.2 when based on body [Cd] in the surviving animals. Two-species Langmuir isotherms were used to relate body [Cd] in survivors to {Cd2+}, corrected for pH in water-extractable or pore-water fractions. An excellent description of effects on growth and reproduction was found when related to the body concentrations predicted in this way; the difference in EC50s between soils was reduced to a factor <2. This demonstrates that F. candida is mainly exposed to cadmium through the soil solution, and suggests that principles of a biotic ligand model approach may be applicable for this soil organism. [source] The apparent electrical conductivity as a surrogate variable for predicting earthworm abundances in tilled soilsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2010Monika Joschko Abstract Noninvasive geophysical methods have a great potential for improving soil-biological studies at field or regional scales: they enable the rapid acquisition of soil information which may help to identify potential habitats for soil biota. A precondition for this application is the existence of close relationships between geophysical measurements and the soil organism of interest. This study was conducted to determine whether field measurements of apparent electrical conductivity (ECa) are related to abundances of earthworms in tilled soils. Relationships between ECa and earthworm populations were investigated along transects at 42 plots under reduced and conventional tillage at a 74 ha field on sandy-loam soil in NE Germany. Relations were analyzed with linear-regression and spatial analysis. The apparent electrical conductivity (ECa) was quantitatively related to earthworm abundances sampled 5 months after the geophysical measurements. No relationship was found, however, in plots under conventional tillage when analyzed separately. If earthworm abundances were known at every other location along the transects and if the state-space approach was used for analysis, the analysis of ECa measurements and earthworm abundances indicated that 50% of the earthworm samples could have been substituted by ECa measurements. Further research is needed to fully evaluate the potential of ECa measurements for predicting earthworm habitats in tilled soil. [source] PCR identification of Rhizobium radiobacter in post-operative endophthalmitisACTA OPHTHALMOLOGICA, Issue 2007V VINH Purpose: To present 2 cases of PCR identification of Rhizobium radiobacter in post-operative endophthalmitis. Methods: Microbiological identification was carried out using samples from aqueous humor and/or vitreous. Conventional cultures were performed using a Brain Heart Infusion broth. We used broad-range eubacterial PCR amplification followed by direct sequencing. Results: In both cases, Rhizobium radiobacter was identified using eubacterial PCR and cultures of vitreous from vitreous tap. An 81-year-old female presented an endophthalmitis 4 weeks after an cataract surgery. Inflammation and infection were controlled after 2 intravitreal antibiotic injections and the final visual acuity was of 20/24 at the one-year follow-up exam. A 75-year-old male who underwent a cataract surgery presented an endophthalmitis 9 days after. This patient was treated by 3 intravitreal antibiotic injections and a vitrectomy. The 6-month follow-up exam showed an optic nerve atrophy with a poor visual outcome (20/120). Both patients had an initial marked anterior chamber inflammation with a hypopyon and a severe retinal vasculitis was observed in the second case. Conclusions: Rhizobium radiobacter is a rare pathogen involved in postoperative endophthalmitis. As it is an environmental soil organism, we may assume that the patient's exposure to outdoor environnement and moist soil remains the source of this organism. This gram negative rod is resistant to vancomycin and have an intermediate resistance to most antibiotics used to treat post-operative endophthalmitis. PCR allows a swifter bacterial identification than do cultures and may help choose the most efficient antibiotics. [source] Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growthECOLOGY LETTERS, Issue 2 2006Alexander M. Koch Abstract Different species of arbuscular mycorrhizal fungi (AMF) alter plant growth and affect plant coexistence and diversity. Effects of within-AMF species or within-population variation on plant growth have received less attention. High genetic variation exists within AMF populations. However, it is unknown whether genetic variation contributes to differences in plant growth. In our study, a population of AMF was cultivated under identical conditions for several generations prior to the experiments thus avoiding environmental maternal effects. We show that genetically different Glomus intraradices isolates from one AMF population significantly alter plant growth in an axenic system and in greenhouse experiments. Isolates increased or reduced plant growth meaning that plants potentially receive benefits or are subject to costs by forming associations with different individuals in the AMF population. This shows that genetic variability in AMF populations could affect host-plant fitness and should be considered in future research to understand these important soil organisms. [source] Plant,soil biota interactions and spatial distribution of black cherry in its native and invasive rangesECOLOGY LETTERS, Issue 12 2003Kurt O. Reinhart Abstract One explanation for the higher abundance of invasive species in their non-native than native ranges is the escape from natural enemies. But there are few experimental studies comparing the parallel impact of enemies (or competitors and mutualists) on a plant species in its native and invaded ranges, and release from soil pathogens has been rarely investigated. Here we present evidence showing that the invasion of black cherry (Prunus serotina) into north-western Europe is facilitated by the soil community. In the native range in the USA, the soil community that develops near black cherry inhibits the establishment of neighbouring conspecifics and reduces seedling performance in the greenhouse. In contrast, in the non-native range, black cherry readily establishes in close proximity to conspecifics, and the soil community enhances the growth of its seedlings. Understanding the effects of soil organisms on plant abundance will improve our ability to predict and counteract plant invasions. [source] Plants protect their roots by alerting the enemies of grubsECOLOGY LETTERS, Issue 4 2001Rob W.H.M. Van Tol Plant roots in the soil are under attack from many soil organisms. Although many ecologists are aware of the presence and importance of natural enemies in the soil that protect the plants from herbivores, the existence and nature of tritrophic interactions are poorly understood. So far, attention has focused on how plants protect their above-ground parts against herbivorous arthropods, either directly or indirectly (i.e. by getting help from the herbivore's enemies). This article is the first in showing that indirect plant defences also operate underground. We show that the roots of a coniferous plant (Thuja occidentalis) release chemicals upon attack by weevil larvae (Otiorhynchus sulcatus) and that these chemicals thereby attract parasitic nematodes (Heterorhabditis megidis). [source] Avoidance tests in site-specific risk assessment,influence of soil properties on the avoidance response of collembola and earthworms,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008Tiago Natal-da-Luz Abstract The ability of organisms to avoid contaminated soils can act as an indicator of toxic potential in a particular soil. Based on the escape response of earthworms and Collembola, avoidance tests with these soil organisms have great potential as early screening tools in site-specific assessment. These tests are becoming more common in soil ecotoxicology, because they are ecologically relevant and have a shorter duration time compared with standardized soil toxicity tests. The avoidance response of soil invertebrates, however, can be influenced by the soil properties (e.g., organic matter content and texture) that affect behavior of the test species in the exposure matrix. Such an influence could mask a possible effect of the contaminant. Therefore, the effects of soil properties on performance of test species in the exposure media should be considered during risk assessment of contaminated soils. Avoidance tests with earthworms (Eisenia andrei) and springtails (Folsomia candida) were performed to identify the influence of both organic matter content and texture on the avoidance response of representative soil organisms. Distinct artificial soils were prepared by modifying quantities of the standard artificial soil components described by the Organization for Economic Co-operation and Development to achieve different organic matter and texture classes. Several combinations of each factor were tested. Results showed that both properties influenced the avoidance response of organisms, which avoided soils with low organic matter content and fine texture. Springtails were less sensitive to changes in these soil constituents compared with earthworms, indicating springtails can be used for site-specific assessments of contaminated soils with a wider range of respective soil properties. [source] Cadmium uptake by earthworms as related to the availability in the soil and the intestineENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2001Leonard A. Oste Abstract The free metal concentration in the soil solution is often considered a key parameter for metal uptake by and toxicity to soft-bodied soil organisms. The equilibrium partitioning theory, which assumes a relationship between the contaminant concentration in pore water and the contaminant concentration in the body tissue, can be used to describe uptake by earthworms. This theory has proved useful for organic chemicals, but its applicability is less clear for metals. In this study, the Cd concentration in soil pore water (pw) was varied by increasing the soil pH by the addition of lime (Ca(OH)2) and by adding manganese oxide (MnO2), which has a high metal binding capacity. Both lime (0.135% w/w) and MnO2 (1% w/w) decreased [Cd2+]pw by a factor of 25, while CdWorm was reduced only by a factor of 1.3 in lime-treated soils and 2.5 in MnO2 -treated soils. Cadmium uptake was weakly related to the free metal concentration (R2adj = 0.66). Adding pH as an explanatory variable increased R2adj to 0.89, indicating that Cd uptake from pore water is pH dependent, which might be attributed to competition of protons and Cd at the surface of the earthworm body. However, previous earthworm experiments in reconstituted groundwater showed a conspicuously smaller pH dependency of Cd uptake. The differences in metal uptake between earthworms in lime- and MnO2 -treated soils are therefore more likely to reflect the predominance of pH-independent intestinal uptake of Cd. Equilibrating the soil with a solution of 0.01 M CaCl2 and 0.1 M triethanolamine (buffered at pH 7.2), simulating the conditions prevailing in the worm intestine, yielded free Cd concentrations that were closely (R2adj = 0.83) and linearly related to the Cd concentration in the earthworm tissue. [source] Ecotoxicological effects of hexahydro-1,3,5-trinitro-1,3,5-triazine on soil microbial activities,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2001Ping Gong Abstract Although hexahydro-1,3,5-trinitro-1,3,5-triazine (also called RDX or hexogen) is a potentially toxic explosive compound that persists in soil, its ecotoxicological effects on soil organisms have rarely been assessed. In this study, two uncontaminated garden soils were spiked with 10 to 12,500 mg RDX/kg dry soil. Soil microbial activities, i.e., potential nitrification, nitrogen fixation, dehydrogenase, basal respiration, and substrate-induced respiration were chosen as bioindicators and were determined after 1-, 4-, and 12-weeks of exposure. Experimental results indicate that RDX showed significant inhibition (up to 36% of control) on indigenous soil microbial communities over the period of this study. All five bioindicators responded similarly to the RDX challenge. The length of exposure also affected the microbial toxicity of RDX, with 12-week exposure exerting more significant effects than the shorter exposure periods, suggesting that soil microorganisms might become more vulnerable to RDX when exposure is extended. The estimated lowest observable adverse effect concentration of RDX was 1,235 mg/kg. No biodegradation products of RDX were detected at all three sampling times. Compared with 2,4,6-trinitrotoluene (TNT), RDX is less toxic to microbes, probably because of its resistance to biodegradation under aerobic conditions, which precludes metabolic activation of nitro groups. [source] Biodiversity and ecosystem function in soilFUNCTIONAL ECOLOGY, Issue 3 2005A. H. FITTER Summary 1Soils are one of the last great frontiers for biodiversity research and are home to an extraordinary range of microbial and animal groups. Biological activities in soils drive many of the key ecosystem processes that govern the global system, especially in the cycling of elements such as carbon, nitrogen and phosphorus. 2We cannot currently make firm statements about the scale of biodiversity in soils, or about the roles played by soil organisms in the transformations of organic materials that underlie those cycles. The recent UK Soil Biodiversity Programme (SBP) has brought a unique concentration of researchers to bear on a single soil in Scotland, and has generated a large amount of data concerning biodiversity, carbon flux and resilience in the soil ecosystem. 3One of the key discoveries of the SBP was the extreme diversity of small organisms: researchers in the programme identified over 100 species of bacteria, 350 protozoa, 140 nematodes and 24 distinct types of arbuscular mycorrhizal fungi. Statistical analysis of these results suggests a much greater ,hidden diversity'. In contrast, there was no unusual richness in other organisms, such as higher fungi, mites, collembola and annelids. 4Stable-isotope (13C) technology was used to measure carbon fluxes and map the path of carbon through the food web. A novel finding was the rapidity with which carbon moves through the soil biota, revealing an extraordinarily dynamic soil ecosystem. 5The combination of taxonomic diversity and rapid carbon flux makes the soil ecosystem highly resistant to perturbation through either changing soil structure or removing selected groups of organisms. [source] Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta-analysis approachGLOBAL CHANGE BIOLOGY, Issue 11 2007MARÍA JESÚS I. BRIONES Abstract The expectation that atmospheric warming will be most pronounced at higher latitudes means that Arctic and montane systems, with predominantly organic soils, will be particularly influenced by climate change. One group of soil fauna, the enchytraeids, is commonly the major soil faunal component in specific biomes, frequently exceeding above-ground fauna in biomass terms. These organisms have a crucial role in carbon turnover in organic rich soils and seem particularly sensitive to temperature changes. In order to predict the impacts of climate change on this important group of soil organisms we reviewed data from 44 published papers using a combination of conventional statistical techniques and meta-analysis. We focused on the effects of abiotic factors on total numbers of enchytraeids (a total of 611 observations) and, more specifically, concentrated on total numbers, vertical distribution and age groupings of the well-studied species Cognettia sphagnetorum (228 observations). The results highlight the importance of climatic factors, together with vegetation and soil type in determining global enchytraeid distribution; in particular, cold and wet environments with mild summers are consistently linked to greater densities of enchytraeids. Based on the upper temperature distribution limits reported in the literature, and identified from our meta-analyses, we also examined the probable future geographical limits of enchytraeid distribution in response to predicted global temperature changes using the HadCM3 model climate output for the period between 2010 and 2100. Based on the existing data we identify that a maximum mean annual temperature threshold of 16 °C could be a critical limit for present distribution of field populations, above which their presence would decline markedly, with certain key species, such as C. sphagnetorum, being totally lost from specific regions. We discuss the potential implications for carbon turnover in these organic soils where these organisms currently dominate and, consequently, their future role as C sink/source in response to climate change. [source] The role of soil community biodiversity in insect biodiversityINSECT CONSERVATION AND DIVERSITY, Issue 3 2010ALISON BENNETT Abstract., 1.,This study demonstrates that feedback loops between plants and insects contribute to both plant and insect diversity. Synthesis of several studies reveals that both bottom-up and top-down forces are important for plant and insect communities. 2.,Feedback loops between plants and soil organisms contribute to plant and soil diversity. An analysis of multiple systems reveals that pathogens, mutualists, and a wide variety of soil fauna directly influence, and are influenced by, plant diversity. 3.,The connection of plant,insect and soil,plant feedback loops leads to the maintenance of all three groups, and the maintenance of these feedback loops crucially affects insect diversity. Examples of the influence of soil community diversity on insect diversity, and the influence of insect diversity on soil community diversity, as well as feedbacks through all three trophic levels are provided. 4.,Finally, means of conserving and restoring soil communities to influence the conservation and restoration of insect communities are discussed. [source] Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyardsAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2007Linda J. Thomson Abstract 1,Herbicides are commonly applied under grapevines in Australia to remove weeds and thereby to avoid water loss through transpiration. 2,Interest in sustainability promotes a reduction in chemical inputs, including herbicides, leading to trials with surface mulches to suppress weeds. 3,Surface mulches may also influence the abundance of a range of invertebrates. Potentially, an increase in natural enemies will contribute to pest control and encourage a reduction in pesticide application. 4,We used three trapping methods and direct soil sampling to assess invertebrates at ground level, in the canopy and in the soil to determine the influence of mulch on natural enemies, potential pests and soil macroinvertebrates, including earthworms. 5,Collections sorted to family demonstrated that the addition of straw or compost mulches increased natural enemies collected with pitfall traps and soil organisms. However, there was no clear indication of the overall superiority of either mulch. 6,Abundance of ground beetles, parasitoid Hymenoptera and spiders collected with pitfall traps were increased by the addition of mulches. In the canopy, predatory and parasitic Diptera and predatory Hemiptera increased after mulching. 7,Earthworms collected by hand sorting soil increased with straw mulching. 8,No influence on pests was detected. Although Lepidoptera and Sigmurethra, collected in pitfall traps, increased with straw mulching, neither included pest species. 9,The results are discussed with reference to the potential economic impact of mulches. [source] Pharmaceutical antibiotic compounds in soils , a reviewJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2003Sören Thiele-Bruhn Antibiotics are highly effective, bioactive substances. As a result of their consumption, excretion, and persistence, they are disseminated mostly via excrements and enter the soils and other environmental compartments. Resulting residual concentrations in soils range from a few ,g upto g kg,1 and correspond to those found for pesticides. Numerous antibiotic molecules comprise of a non-polar core combined with polar functional moieties. Many antibiotics are amphiphilic or amphoteric and ionize. However, physicochemical properties vary widely among compounds from the various structural classes. Existing analytical methods for environmental samples often combine an extraction with acidic buffered solvents and the use of LC-MS for determination. In soils, adsorption of antibiotics to the organic and mineral exchange sites is mostly due to charge transfer and ion interactions and not to hydrophobic partitioning. Sorption is strongly influenced by the pH of the medium and governs the mobility and transport of the antibiotics. In particular for the strongly adsorbed antibiotics, fast leaching through soils by macropore or preferential transport facilitated by dissolved soil colloids seems to be the major transport process. Antibiotics of numerous classes are photodegraded. However, on soil surfaces this process if of minor influence. Compared to this, biotransformation yields a more effective degradation and inactivation of antibiotics. However, some metabolites still comprise of an antibiotic potency. Degradation of antibiotics is hampered by fixation to the soil matrix; persisting antibiotics were already determined in soils. Effects on soil organisms are very diverse, although all antibiotics are highly bioactive. The absence of effects might in parts be due to a lack of suitable test methods. However, dose and persistence time related effects especially on soil microorganisms are often observed that might cause shifts of the microbial community. Significant effects on soil fauna were only determined for anthelmintics. Due to the antibiotic effect, resistance in soil microorganisms can be provoked by antibiotics. Additionally, the administration of antibiotics mostly causes the formation of resistant microorganisms within the treated body. Hence, resistant microorganisms reach directly the soils with contaminated excrements. When pathogens are resistant or acquire resistance from commensal microorganisms via gene transfer, humans and animals are endangered to suffer from infections that cannot be treated with pharmacotherapy. The uptake into plants even of mobile antibiotics is small. However, effects on plant growth were determined for some species and antibiotics. Pharmazeutische Antibiotika in Böden , ein Überblick Antibiotika sind hochgradig wirksame, bioaktive Substanzen. Infolge ihrer Anwendung, Ausscheidung und Persistenz werden sie meist über die Exkremente in Böden und andere Umweltkompartimente eingetragen. Die resultierenden Rückstandskonzentrationen in Böden im Bereich von wenigen ,g bis zu g kg,1 entsprechen in etwa denen von Pflanzenschutzmitteln. Die Molekülstruktur von Antibiotika besteht häufig aus einem unpolaren Kern und polaren Randgruppen. Viele Antibiotika sind amphiphil oder amphoter und bilden Ionen, jedoch weisen die zahlreichen Antibiotika unterschiedlicher Strukturklassen stark divergierende physikochemische Eigenschaften auf. In den vorliegenden Nachweis"methoden für Umweltproben werden häufig sauer gepufferte Lösungsmittel zur Extraktion und eine Bestimmung mittels LC-MS kombiniert. Die Adsorption der Antibiotika an den organischen als auch an den mineralischen Bodenaustauschern erfolgt zumeist durch Ladungs- und Ionenwechselwirkungen und weniger durch hydrophobe Bindungen. Das Verteilungsverhalten hängt dabei entscheidend vom pH-Wert des Mediums ab und beeinflusst die Mobilität und Verlagerung der Antibiotika. Bei vielen, insbesondere stark adsorbierten Antibiotika sind v.,a. schnelle Fließvorgänge wie durch präferenziellen und Makroporenfluss sowie der Cotransport mit gelösten Bodenkolloiden von besonderer Bedeutung. Antibiotika vieler Strukturklassen können durch Licht abgebaut werden. Dieser Abbaupfad spielt auf Bodenoberflächen jedoch nur eine untergeordnete Rolle. Hingegen kommt es insbesondere durch biologische Transformationsprozesse zu einer intensiven Degradation und Inaktivierung der Antibiotika. Verschiedene Metaboliten weisen jedoch ebenfalls ein antibiotisches Potential auf. Der Abbau der Antibiotika wird durch die Festlegung in Böden gehemmt; dementsprechend wurde eine Persistenz verschiedener Antibiotika nachgewiesen. Trotz der starken bioaktiven Wirkung aller Antibiotika sind die festgestellten Effekte auf Bodenorganismen sehr unterschiedlich. Dies liegt nicht zuletzt an einem Mangel an geeigneten Testmethoden. In der Regel sind jedoch von Dosis und Wirkungsdauer abhängige Effekte insbesondere auf Mikroorganismen festzustellen, die zu Veränderungen der Mikroorganismenpopulation führen können. Lediglich durch Anthelmintika wurden deutliche Wirkungen auf Vertreter der Bodenfauna hervorgerufen. Infolge der antibiotischen Wirkung der Pharmazeutika kann eine Resistenzbildung bei Bodenorganismen ausgelöst werden. Zudem hat die Medikation von Antibiotika die Bildung resistenter Mikroorganismen bereits im behandelten Organismus zur Folge. Durch deren anschließende Ausscheidung gelangen resistente Keime auch direkt in die Böden. Handelt es sich um resistente Pathogene oder kommt es zur Übertragung der Resistenzgene zwischen kommensalen und pathogenen Mikroorganismen, so besteht das erhebliche Risiko einer nicht therapierbaren Infektion von Mensch und Tier. Die Aufnahme selbst mobiler Antibiotika in die Pflanzen ist sehr gering. Dennoch wurden bei einigen Pflanzenarten Wirkungen von Antibiotika auf das Wachstum nachgewiesen. [source] Biology and establishment of mountain shrubs on mining disturbances in the Rocky Mountains, USALAND DEGRADATION AND DEVELOPMENT, Issue 5 2003M. W. Paschke Abstract The Rocky Mountains of the western United States contain many economically important natural resources. Increasing development of these resources has lead to land degradation, which often requires restoration efforts. A common type of disturbance in this region is mineral extraction and these activities often occur in zones of vegetation dominated by shrubs. These mined lands have proven to be particularly challenging to restore to native shrub cover. Mountain shrubland species such as big sagebrush (Artemisia tridentata), antelope bitterbrush (Purshia tridentata), Saskatoon serviceberry (Amelanchier alnifolia), black chokecherry (Prunus virginiana), mountain mahogany (Cercocarpus montanus), and snowberry (Symphoricarpos sp.) are crucial species for wildlife in this region due to the seasonal dependence of many wildlife species on the mountain shrubland zones. The development of successful restoration techniques for these key shrub species is therefore important for the continued and sustainable utilization of natural resources in the Rocky Mountains. The purpose of this literature review is to provide a reference to land managers working on woody plant establishment on mining disturbances in mountain shrublands in the Rocky Mountains. This review covers the biology, ecology, and propagation of six shrub species that are of primary importance for meeting regulatory compliance in this region. Based upon this survey of the published literature, we conclude that successful establishment of these species has most often involved: (1) utilization of local shrub ecotypes, varieties or subspecies in reclamation efforts, (2) protection from browsing during the establishment phase, (3) strategies for avoiding herbaceous competition, and (4) providing a source of mutualistic soil organisms. Additional specific recommendations for each of these species are discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source] Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forestNEW PHYTOLOGIST, Issue 2 2010Mona N. Högberg Summary ,The flux of carbon from tree photosynthesis through roots to ectomycorrhizal (ECM) fungi and other soil organisms is assumed to vary with season and with edaphic factors such as nitrogen availability, but these effects have not been quantified directly in the field. ,To address this deficiency, we conducted high temporal-resolution tracing of 13C from canopy photosynthesis to different groups of soil organisms in a young boreal Pinus sylvestris forest. ,There was a 500% higher below-ground allocation of plant C in the late (August) season compared with the early season (June). Labelled C was primarily found in fungal fatty acid biomarkers (and rarely in bacterial biomarkers), and in Collembola, but not in Acari and Enchytraeidae. The production of sporocarps of ECM fungi was totally dependent on allocation of recent photosynthate in the late season. There was no short-term (2 wk) effect of additions of N to the soil, but after 1 yr, there was a 60% reduction of below-ground C allocation to soil biota. ,Thus, organisms in forest soils, and their roles in ecosystem functions, appear highly sensitive to plant physiological responses to two major aspects of global change: changes in seasonal weather patterns and N eutrophication. [source] Soil Organism and Plant Introductions in Restoration of Species-Rich Grassland CommunitiesRESTORATION ECOLOGY, Issue 2 2009Paul Kardol Abstract Soil organisms can strongly affect competitive interactions and successional replacements of grassland plant species. However, introduction of whole soil communities as management strategy in grassland restoration has received little experimental testing. In a 5-year field experiment at a topsoil-removed ex-arable site (receptor site), we tested effects of (1) spreading hay and soil, independently or combined, and (2) transplanting intact turfs on plant and soil nematode community development. Material for the treatments was obtained from later successional, species-rich grassland (donor site). Spreading hay affected plant community composition, whereas spreading soil did not have additional effects. Plant species composition of transplanted turfs became less similar to that in the donor site. Moreover, most plants did not expand into the receiving plots. Soil spreading and turf transplantation did not affect soil nematode community composition. Unfavorable soil conditions (e.g., low organic matter content and seasonal fluctuations in water level) at the receptor site may have limited plant and nematode survival in the turfs and may have precluded successful establishment outside the turfs. We conclude that introduction of later successional soil organisms into a topsoil-removed soil did not facilitate the establishment of later successional plants, probably because of the "mismatch" in abiotic soil conditions between the donor and the receptor site. Further research should focus on the required conditions for establishment of soil organisms at restoration sites in order to make use of their contribution to grassland restoration. We propose that introduction of organisms from "intermediate" stages will be more effective as management strategy than introduction of organisms from "target" stages. [source] Integrating Soil Ecological Knowledge into Restoration ManagementRESTORATION ECOLOGY, Issue 4 2008Liam Heneghan Abstract The variability in the type of ecosystem degradation and the specificity of restoration goals can challenge restorationists' ability to generalize about approaches that lead to restoration success. The discipline of soil ecology, which emphasizes both soil organisms and ecosystem processes, has generated a body of knowledge that can be generally useful in improving the outcomes of restoration despite this variability. Here, we propose that the usefulness of this soil ecological knowledge (SEK) for restoration is best considered in the context of the severity of the original perturbation, the goals of the project, and the resilience of the ecosystem to disturbance. A straightforward manipulation of single physical, chemical, or biological components of the soil system can be useful in the restoration of a site, especially when the restoration goal is loosely defined in terms of the species and processes that management seeks to achieve. These single-factor manipulations may in fact produce cascading effects on several ecosystem attributes and can result in unintended recovery trajectories. When complex outcomes are desired, intentional and holistic integration of all aspects of the soil knowledge is necessary. We provide a short roster of examples to illustrate that SEK benefits management and restoration of ecosystems and suggest areas for future research. [source] |