Soil Horizons (soil + horizon)

Distribution by Scientific Domains

Kinds of Soil Horizons

  • deeper soil horizon
  • mineral soil horizon


  • Selected Abstracts


    Sampling and analyzing metals in soils for archaeological prospection: A critique

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 8 2004
    Rob Haslam
    This paper presents a critique of current methods of sampling and analyzing soils for metals in archaeological prospection. Commonly used methodologies in soil science are shown to be suitable for archaeological investigations, with a concomitant improvement in their resolution. Understanding the soil-fraction location, concentration range, and spatial distribution of autochthonous (native) soil metals is shown to be a vital precursor to archaeological-site investigations, as this is the background upon which anthropogenic deposition takes place. Nested sampling is suggested as the most cost-effective method of investigating the spatial variability in the autochthonous metal concentrations. The use of the appropriate soil horizon (or sampling depth) and point sampling are critical in the preparation of a sampling regime. Simultaneous extraction is proposed as the most efficient method of identifying the location and eventual fate of autochthonous and anthropogenic metals, respectively. © 2004 Wiley Periodicals, Inc. [source]


    Vertical partitioning of CO2 production within a temperate forest soil

    GLOBAL CHANGE BIOLOGY, Issue 6 2006
    ERIC A. DAVIDSON
    Abstract The major driving factors of soil CO2 production , substrate supply, temperature, and water content , vary vertically within the soil profile, with the greatest temporal variations of these factors usually near the soil surface. Several studies have demonstrated that wetting and drying of the organic horizon contributes to temporal variation in summertime soil CO2 efflux in forests, but this contribution is difficult to quantify. The objectives of this study were to partition CO2 production vertically in a mixed hardwood stand of the Harvard Forest, Massachusetts, USA, and then to use that partitioning to evaluate how the relative contributions of CO2 production by genetic soil horizon vary seasonally and interannually. We measured surface CO2 efflux and vertical soil profiles of CO2 concentration, temperature, water content, and soil physical characteristics. These data were applied to a model of effective diffusivity to estimate CO2 flux at the top of each genetic soil horizon and the production within each horizon. A sensitivity analysis revealed sources of uncertainty when applying a diffusivity model to a rocky soil with large spatial heterogeneity, especially estimates of bulk density and volumetric water content and matching measurements of profiles and surface fluxes. We conservatively estimate that the O horizon contributed 40,48% of the total annual soil CO2 efflux. Although the temperature sensitivity of CO2 production varied across soil horizons, the partitioning of CO2 production by horizon did not improve the overall prediction of surface CO2 effluxes based on temperature functions. However, vertical partitioning revealed that water content covaried with CO2 production only in the O horizon. Large interannual variations in estimates of O horizon CO2 production indicate that this layer could be an important transient interannual source or sink of ecosystem C. [source]


    Effects of tractor wheeling on root morphology and yield of lucerne (Medicago sativa L.)

    GRASS & FORAGE SCIENCE, Issue 3 2008

    Summary The purpose of this study was to determine the effect of soil compaction on the herbage yield and root growth of lucerne (Medicago sativa L.). A field experiment was conducted on a silty loam Mollic Fluvisols soil in 2003,2006. Herbage yield and root morphology, in terms of root length density, mean root diameter, specific root length and distribution of dry matter (DM) in roots, were measured. Four compaction treatments were applied three times annually by tractor using the following number of passes: control without experimental traffic, two passes, four passes and six passes. The tractor traffic changed the physical properties of the soil by increasing bulk density and penetration resistance. Soil compaction also improved its water retention properties. These changes were associated with changes in root morphology and distribution of the DM in roots. Soil compaction resulted in higher proportions of the DM in roots, especially in the upper, 0,10 cm, soil horizon. Decreases in the root length density were observed in a root diameter range of 0·1,1·0 mm. It was also found that roots in a more compacted soil were significantly thicker. An effect of the root system of lucerne on soil compaction was observed. The root system of lucerne decreased the effects of soil compaction that had been recorded in the first and the second year of the experiment. An increase in the number of passes resulted in a decrease in the DM yield of herbage in the second and third harvests each year. [source]


    Hydrogeochemical balance of forest umbrisol profiles (,Sierra de Gata', central western Spain)

    HYDROLOGICAL PROCESSES, Issue 14 2007
    I. Menéndez
    Abstract Three techniques for obtaining soil water solutions (gravitational and matrical waters extracted using both in situ tension lysimeters and in vitro pressure chambers) and their later chemical analysis were performed in order to know the evolution of the soil-solution composition when water moves down through the soil, from the Ah soil horizon to the BwC- or C-horizons of forest soils located in western Spain. Additionally, ion concentrations and water volumes of input waters to soil (canopy washout) and exported waters (drainage solutions from C-horizons) were determined to establish the net balance of solutes in order to determine the rates of leaching or retention of ions. A generalized process of sorption or retention of most components (even Cl,) was observed, from the soil surface to the C-horizon, in both gravitational and matrical waters, with H4SiO4, Mn2+, Na+, and SO42, being the net exported components from the soil through the groundwater. These results enhance the role of the recycling effect in these forest soils. The net percentages of elements retained in these forest soils, considering the inputs and the outputs balance, were 68% K+, 85% Ca2+, 58% Mg2+, 7% Al3+, 5% Fe3+, 34% Zn2+, 57% Cl,, and 20% NO3,, and about 75% of dissolved organic carbon was mineralized. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Nitrogen fixation and denitrification in a floodplain forest near Manaus, Brazil

    HYDROLOGICAL PROCESSES, Issue 7 2003
    Heidi Kreibich
    Abstract The Amazon floodplain (várzea) is seasonally affected by water level fluctuations of the Solimões/Amazon River. The drastic environmental changes that occur also include microbiological processes, such as nitrogen (N2) fixation and denitrification. Both processes were measured in the soil by the acetylene reduction assay and the acetylene block method in a várzea forest on Ilha de Marchantaria, Central Amazonia, Brazil. In the surface soil horizon (0,5 cm), N2 fixation was highest during the exposed period (0·04,0·26 nmolN h,1 g,1 dry weight (dw)). In contrast, denitrification varied from 0 to 1·40 nmolN h,1 g,1 dw, with high rates during the submerged and the transition periods. No significant difference between locations with legume trees, with non-legume trees and without trees could be observed. N2 fixation rates of incubations (litter down to 450 cm depth) for samples collected during the exposed period ranged from 0 to 0·11 nmolN h,1 g,1 dw, with highest rates in the surface soil horizon (0,5 cm). Denitrification ranged from 0 to 0·05 nmolN h,1 g,1 dw, with the highest rate at 250,300 cm depth, which was just below the water table. The maximum N2 fixation rate (0·89 nmolN h,1 g,1dw) and denitrification rate (0·09 nmolN h,1 g,1 dw) occurred in the litter layer. On average, at least three times as much N is lost from the surface soil horizon via denitrification than is gained by N2 fixation annually, but the rates are strongly influenced by the flood pulse. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Spatial variability of O layer thickness and humus forms under different pine beech,forest transformation stages in NE Germany

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2006
    Oliver Bens
    Abstract Spatial variability of humus layer (O layer) thicknesses can have important impacts upon soil water dynamics, nutrient storage and availability, as well as plant growth. The purpose of the present study was to elucidate the impact of forest-transformation practices on the spatial variability of O layer thicknesses. The study focused on the Kahlenberg forest area (NE Germany) with stands of Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica) of different age structures that form a transformation chronosequence from pure Scots pine stands towards pure European beech stands. Topsoil profiles including both, the O layer and the uppermost humic mineral soil horizon were excavated at intervals of 0.4 m along 15,20 m long transects, and spatial variability of O layer thicknesses was quantified by variogram analysis. The correlation lengths of total O layer thickness increased in the sequence consisting of pure pine stand (3.1 m) , older mixed stand (3.7 m) , pure beech stand (4.5 m), with the exception of the younger mixed stand, for which no correlation lengths of total O layer thickness could be determined. The degree of spatial correlation, i.e., the percentage of the total variance which can be described by variograms, was highest for the two monospecies stands, whereas this percentage was distinctly lower for the two mixed stands. A similar minimum for the two mixed stands was observed for the correlation lengths of the Oh horizon. These results suggest that the spatial structures of forest-transformation stands may be interpreted in terms of a disturbance (in the form of the underplanting of beech trees). After this disturbance, the forest ecosystem requires at least 100 y to again reach relative equilibrium. These findings are in line with the results of other soil-related investigations at these sites. Räumliche Variabilität der Humuslagenmächtigkeit und Humusformen in verschiedenen Stadien des Waldumbaus von Kiefer zu Buche in NO-Deutschland Die räumliche Variabilität der Humusauflagenmächtigkeit kann einen bedeutenden Einfluss auf die Bodenwasserdynamik, Nährstoffspeicherung und -verfügbarkeit sowie das Pflanzenwachstum haben. Ziel dieser Studie war es, die Auswirkungen von Waldumbaumaßnahmen auf die räumliche Verteilung der Auflagehumusmächtigkeiten zu untersuchen. Im Forstrevier Kahlenberg, mit Beständen von Kiefer (Pinus sylvestris) und Buche (Fagus sylvatica) unterschiedlichen Alters, welche eine Transformations-Chronosequenz von einem Kiefern-Reinbestand hin zu einem reinen Buchenbestand darstellen, wurden Humusprofile entlang von 15,20 m langen Transekten in Abständen von 0,4 m aufgenommen. Die räumliche Variabilität der Mächtigkeiten der Auflagehumushorizonte wurde durch Variogramm-Analysen quantifiziert. Die Korrelationslängen der Mächtigkeiten des gesamten Auflagehumus stiegen in der Reihenfolge reiner Kiefernbestand (3,1 m) , älterer Mischbestand (3,7 m) , reiner Buchenbestand (4,5 m) an. Aus dieser Reihe fällt der jüngere Mischbestand heraus; für ihn konnten keine Korrelationslängen ermittelt werden. Der Grad der räumlichen Korrelation, d. h. der Anteil der gesamten Varianz, der durch Variogramme beschrieben wird, ist für die beiden Reinbestände am höchsten, während er für die beiden Mischbestände deutlich geringer ist. Ein ähnliches Minimum für die beiden Mischbestände ergibt sich, wenn nur die Korrelationslängen der Oh-Mächtigkeiten betrachtet werden. Diese Ergebnisse deuten darauf hin, dass die räumlichen Strukturen von Waldumbaubeständen im Sinne einer Störung gedeutet werden können (wobei die Umbaumaßnahme und der Unterbau mit Buchen die Störung darstellt). Diese Störung dauert offenbar mindestens 100 a an. Dieser Befund stimmt mit den Ergebnissen aus Studien zu weiteren relevanten Bodeneigenschaften an Forststandorten im nordostdeutschen Tiefland überein. [source]


    Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2010
    Adam G. West
    The use of isotope ratio infrared spectroscopy (IRIS) for the stable hydrogen and oxygen isotope analysis of water is increasing. While IRIS has many advantages over traditional isotope ratio mass spectrometry (IRMS), it may also be prone to errors that do not impact upon IRMS analyses. Of particular concern is the potential for contaminants in the water sample to interfere with the spectroscopy, thus leading to erroneous stable isotope data. Water extracted from plant and soil samples may often contain organic contaminants. The extent to which contaminants may interfere with IRIS and thus impact upon data quality is presently unknown. We tested the performance of IRIS relative to IRMS for water extracted from 11 plant species and one organic soil horizon. IRIS deviated considerably from IRMS for over half of the samples tested, with deviations as large as 46, (,2H) and 15.4, (,18O) being measured. This effect was reduced somewhat by using activated charcoal to remove organics from the water; however, deviations as large as 35, (,2H) and 11.8, (,18O) were still measured for these cleaned samples. Interestingly, the use of activated charcoal to clean water samples had less effect than previously thought for IRMS analyses. Our data show that extreme caution is required when using IRIS to analyse water samples that may contain organic contaminants. We suggest that the development of new cleaning techniques for removing organic contaminants together with instrument-based software to flag potentially problematic samples are necessary to ensure accurate plant and soil water analyses using IRIS. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Age of A2 Horizon Charcoal and Forest Structure near Porto Trombetas, Pará, Brazil,

    BIOTROPICA, Issue 3 2001
    John K. Francis
    ABSTRACT To study the structure and composition of old-growth forest in the Saracá-Taquera National Forest near Porto Trombetas, Brazil, we established 36 0.25 ha plots and described the vegetation. We collected charcoal from the A2 soil horizon of each plot for radiocarbon dating. Although fires have been very rare in this forest during historic times, the presence of charcoal in these soils indicates fire at some earlier period. The ages (conventional radiocarbon age adjusted to 1997) of the charcoal ranged from 177 to 1547 years. These ages, however, did not correlate significantly with any of several measures of biodiversity or stand characteristics. The relative uniformity of the current old-growth forest indicates that either the prehistoric fires were of such low intensity that they had little long-term effect on the vegetation or that the present stands have progressed to near steady state. [source]


    Organic matter quality of a forest soil subjected to repeated drying and different re-wetting intensities

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2010
    A. Schmitt
    Extended drought periods followed by heavy rainfall may increase in many regions of the Earth, but the consequences for the quality of soil organic matter and soil microbial communities are poorly understood. Here, we investigated the effect of repeated drying and re-wetting on microbial communities and the quality of particulate and dissolved organic matter in a Haplic Podzol from a Norway spruce stand. After air-drying, undisturbed soil columns were re-wetted at different intensities (8, 20 and 50 mm per day) and time intervals, so that all treatments received the same amount of water per cycle (100 mm). After the third cycle, SOM pools of the treatments were compared with those of non-dried control columns. Lignin phenols were not systematically affected in the O horizons by the treatments whereas fewer lignin phenols were found in the A horizon of the 20- and 50-mm treatments. Microbial biomass and the ratio of fungi to bacteria were generally not altered, suggesting that most soil microorganisms were well adapted to drying and re-wetting in this soil. However, gram-positive bacteria and actinomycetes were reduced whereas gram-negative bacteria and protozoa were stimulated by the treatments. The increase in the (cy 17: 0 + cy 19: 0)/(16:1,7c + 18:1,7c) ratio indicates physiological or nutritional stress for the bacterial communities in the O, A and B horizons with increasing re-wetting intensity. Drying and re-wetting reduced the amount of hydrolysable plant and microbial sugars in all soil horizons. However, CO2 and dissolved organic carbon fluxes could not explain these losses. We postulate that drying and re-wetting triggered chemical alterations of hydrolysable sugar molecules in organic and mineral soil horizons. [source]


    Fate of airborne metal pollution in soils as related to agricultural management.

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007

    Summary The fate of airborne metal pollutants in soils is still relatively unknown. We studied the incorporation of such airborne metal pollution in two soils under long-term permanent pasture (PP) and conventional arable land (CA). Both soils were located at an almost equal distance from a former zinc smelter complex and developed under comparable pedogenetic conditions. Profiles of total concentrations of Zn, chosen as a mobile, and Pb as a little- or non-mobile element, were examined and compared with macro- and micromorphological soil characteristics (soil colour, biological activity). The two soils showed different profiles of total Zn and Pb concentrations, with a marked decrease of concentrations of both elements under the plough layer in CA, whereas the decrease was more progressive in PP. However, the stocks of Zn and Pb for the 1-m soil profiles of CA and PP were comparable. Correlation of Zn and Pb concentration at different depths with total Fe contents and comparison with estimated data for the local geochemical background (LGCB), suggests transport of Zn from the surface to depth in CA and PP, and Pb movement in PP. In CA, 53% of Zn and 92.5% of Pb stocks derived from airborne metal pollution were located at depths < 26 cm. In PP, only 40% of Zn and 82% of Pb, derived from airborne pollution, were found in the A11 and A12 horizons (< 26 cm), the remaining 18% of the Pb stock being incorporated until 50 cm depth; one-third of total Zn stock ascribed to airborne pollution was found at depths > 50 cm. Studies of the composition of gravitational water collected in soils from the same study area suggest two mechanisms for metal movement. First, mobile metal ions (Zn2+) move in the soil solution and are intercepted by iron-clay complexes in deeper soil horizons. Second, observed only in PP, simultaneous movement of Zn and Pb is ascribed to bioturbation by earthworms. [source]


    Regolith and soils in Bhutan, Eastern Himalayas

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2004
    I. C. Baillie
    Summary Bhutan lies at altitudes of 100,7500 m on the steep, long and complex southern slopes of the Eastern Himalayas. Soil surveys show that, despite steep gradients, there are many moderately or deeply weathered soils. Many slopes are mantled with polycyclic, layered drift materials, so soil horizons owe as much to regolith heterogeneity as to pedogenesis. In the limited arable areas soil profiles are further complicated by rice cultivation and the construction, maintenance and irrigation of flat terraces on steep slopes. Some natural pedogenic horizonation is apparent, and there is an altitudinal zonation of soil types. Although the climate is warm and seasonally wet, most soils on the subtropical southern foothills are not particularly weathered and leached. The foothills are seismically active, and many soils are formed in unstable landslide debris. Elsewhere the regoliths are more stable. The main soils up to about 3000 m in the inner valleys are moderately weathered and leached, and have bright subsoil colours and thin dark topsoils. Above these there is a zone of bright orange-coloured non-volcanic andosolic soils. Further upslope there are acid soils with thick surface litter, stagnogleyic topsoils, and drab brown subsoils with organic cutans. These grade to weak podzols, which extend from about 3500 m up to the treeline, around 4000 m. Above this, alpine turf soils, with deep, dark, and friable topsoils and yellowish friable subsoils, are intermixed with unweathered glacial deposits. The interactions between pedogenesis and the deposition of the varied and layered drift materials complicate mapping and classification of the soils. [source]


    Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial by-products

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2004
    V. Illera
    Summary In situ stabilization of heavy metals in contaminated soils by the addition of various types of soil amendment is an attractive technique for remediation. We investigated the potential of three industrial by-products (phosphogypsum, red gypsum and dolomitic residue) for boosting the heavy metal sorption capacity of an acid soil (patents pending, Spanish applications no 200201704 and 200201375) by using sorption isotherm experiments. The three by-products were found substantially to increase the retention of lead, cadmium and copper on the solid components of the soil. The increase in lead retention of the soil horizons upon the addition of both phosphogypsum and red gypsum was dominated by the formation of anglesite minerals. The dolomitic residue increased the metal retention capacity of the soil horizons through the precipitation of laurionite-type minerals as well as cadmium and copper hydroxy-chlorides. In addition to the batch sorption study, we used scanning electron microscopy to investigate the metal sorption processes in the soil by the effect of the treatments. Lead was frequently found to be linked to the edge charges of kaolinite minerals. The three metals were found to be associated with organic matter in the Ap horizon treated with the three by-products. Finally, the three metals were found to be associated with undissolved dolomitic residue particles. [source]


    Amino acids in Quaternary soil horizons from southwest Poland

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2003
    A. Szponar
    Summary Aminostratigraphy has proved to be a useful approach for dating fossils from the Quaternary. In these studies the amino acids in Quaternary soil formations were determined in an attempt to establish their stratigraphical relationships and relative ages. The sampling sites are in the southwest of Poland, in the Trzebnickie Hills. Three samples of fossil soils and two of recent soils were analysed. The absolute age of the soil samples was estimated by radiocarbon dating. We found that the total amount of amino acids decreased with the increasing age of soil. The smallest amounts of amino acids were found in the oldest fossil soil of Denekamp (Vistulian) age dated 29 600 ± 760 years bp. A sample of recent loess soil contained the most total amino acids, whereas the fossil soil of Lower Atlantic age, dated 3540 ± 230 years bp, was intermediate in respect of the total amount of amino acids, oxidation state and degree of biochemical transformation. Neutral amino acids formed a majority of all the amino acids studied. The method we describe could be useful in relative chronostratigraphical identification of fossil soils. [source]


    Ammonium fluoride extraction for determining inorganic sulphur in acid forest soils

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2000
    J. Prietzel
    Summary Current methods for determining inorganic sulphur (S) in aerated mineral soil horizons often result in underestimates. To overcome this defect we developed a new method combining a batch extraction with 0.5 m NH4F solution at a soil:solution ratio of 1:5 with a subsequent analysis of the mobilized SO42, by ion chromatography. The ammonium fluoride extraction enables us to characterize inorganic sulphate in non-calcareous forest soils. It is more efficient than conventional procedures in which inorganic S is extracted with phosphate or bicarbonate solution. In contrast to the extraction with strongly alkaline reagents (NaOH, KOH, LiOH), the NH4+,NH3 buffer system in NH4F prevents the pH of the suspension from exceeding 9.0 and thus the undesired conversion of organic S into SO42, by auto-oxidation and hydrolysis of ester sulphate. In a comparison we demonstrated that the inorganic S in six German forest soils is underestimated by up to 50% or 200 kg S ha,1 in the uppermost 60 cm, if it is assessed by extraction with 0.016 m KH2PO4 or 0.5 m NaHCO3 instead of 0.5 m NH4F. Conversely, the pool of ester sulphate is overestimated almost threefold. [source]


    Rooting depth and soil moisture control Mediterranean woody seedling survival during drought

    FUNCTIONAL ECOLOGY, Issue 3 2007
    F. M. PADILLA
    Summary 1Seedling survival is one of the most critical stages in a plant's life history, and is often reduced by drought and soil desiccation. It has been hypothesized that root systems accessing moist soil layers are critical for establishment, but very little is known about seedling root growth and traits in the field. 2We related seedling mortality to the presence of deep roots in a field experiment in which we monitored soil moisture, root growth and seedling survival in five Mediterranean woody species from the beginning of the growing season until the end of the drought season. 3We found strong positive relationships between survival and maximum rooting depth, as well as between survival and soil moisture. Species with roots in moist soil layers withstood prolonged drought better, whereas species with shallow roots died more frequently. In contrast, biomass allocation to roots was not related to establishment success. 4Access to moist soil horizons accounted for species-specific survival rates, whereas large root : shoot (R:S) ratios did not. The existence of soil moisture thresholds that control establishment provides insights into plant population dynamics in dry environments. [source]


    Quantifying prehistoric soil erosion,A review of soil loss methods and their application to a Celtic square enclosure (Viereckschanze) in Southern Germany

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 8 2007
    Matthias Leopold
    This paper discusses the strengths and weaknesses of three different methods for quantifying prehistoric soil erosion. Method A estimates erosion by determining the amount of colluvium stored downhill. Method B involves reconstructing a former erosion surface using truncated soil horizons. Method C compares the elevation of a paleosol beneath an earthwork with the modern surface in the surrounding area. Each method was applied to a Celtic earthwork (Viereckschanze) at Poign (near Regensburg) in Southern Germany in order to cross-check the different results. For an erosion area of 3.6 ha and during 300 years of agricultural usage, Method A calculates a minimum erosion rate of 20.8 t/ha/a. Method B computes 10 t/ha/a of soil loss. Method C yields the highest rate of erosion with 24.2 t/ha/a. We have confidence in Method C, which implies an underassesment of soil loss in using methods A or B. © 2007 Wiley Periodicals, Inc. [source]


    Depositional history and evolution of the Paso del Indio site, Vega Baja, Puerto Rico

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 6 2003
    Jeffrey J. Clark
    Potshards discovered during excavation of bridge pilasters for a major expressway over the Rio Indio floodplain, a stream incised within the karsts of north-central Puerto Rico, required large-scale archaeological excavation. Five-meter-deep bridge pilaster excavations in the alluvial valley provide a 4500-year history of deposition. Stratigraphic analysis of the exposed pilaster walls in combination with textural and organic carbon analyses of sediment cores obtained over a much broader area suggest a fluvial system dominated by overbank deposition. Six sequences of alternating light and dark layers of sediment were identified. The darker layers are largely composed of silts and clays, whereas the lighter layers are rich in sand-sized sediment. Archaeological evidence indicates the organic-rich dark layers, believed to be buried A horizons, coincide with pre-historic occupation by Cedrosan Saladoid, Elenan Ostionoid, and Chican Ostionoid, extending from A.D. 450 to A.D. 1500. Lighter layers below the dark soil horizons are interpreted as overbank deposits from large magnitude flood events. The floodplain aggraded discontinuously with rapid deposition of sand followed by gradual accumulation of silt, clay, and organic material. An approximately 1-m-thick layer of coarse sand and gravel halfway up the stratigraphic column represents an episode of more frequent and severe floods. Based on radiocarbon ages, this layer aggraded between A.D. 1000 and A.D. 1100, which is well within the Elenan Ostionoid era (A.D. 900,1200). Rates of sedimentation during this period were approximately 8 mm per year, ten times greater than the estimates of sedimentation rates before and after this flood sequence. The cause for the change in deposition is unknown. Nonetheless the Elenan Ostionoid would have had to endure frequent loss of habitation structures and crops during these events. © 2003 Wiley Periodicals, Inc. [source]


    Darwin would be proud: Bioturbation, dynamic denudation, and the power of theory in science

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2002
    D. L. Johnson
    Charles Darwin's worm book influenced many early researchers who, following his lead, demonstrated how soil biota mechanically generate new strata and soil horizons, as well as blur or destroy them. Such early observations on biomechanical processes failed to find visibility in our models of landscape evolution for several reasons, chief of which are (1) except for ichnology, an Earth sciences tradition of adopting frameworks where biomechanical processes are absent and (2) a lapse of over 100 years after Darwin before a genetic language backed by supporting theory appeared that could showcase the importance of such processes. Examples of influential Earth science frameworks in which biomechanical processes are absent are the V.V. Dokuchaev,USDA,H. Jenny soil formational (five factors) paradigm, W.M. Davis' geographical cycle, the W. Penck,L.C. King,R.V. Ruhe backwasting-pedimentation concept, the stratigraphic Law of Superposition, and other traditional approaches to archaeology, geomorphology, and pedology. Examples of recent genetic language that serve to ameliorate the problem are soil thickness concepts, biomantle, bioturbation, faunalturbation, floralturbation, and pedoturbation. Examples of recent supporting theory that incorporate biomechanical processes are soil evolution, biomantle evolution, dynamic pedogenesis, and the dynamic denudation framework advocated here. Dynamic denudation is a unified synthesis that elevates bioturbation to parity levels with other major archaeogenic, geomorphogenic, and pedogenic processes. The general framework and its principal elements are summarized and simulated by diagrams and augmented by photographs taken in disparate parts of the world. The model has useful explanatory and predictive value in archaeology, geomorphology, pedology, and other surficial process research. © 2002 John Wiley & Sons, Inc. [source]


    Vertical partitioning of CO2 production within a temperate forest soil

    GLOBAL CHANGE BIOLOGY, Issue 6 2006
    ERIC A. DAVIDSON
    Abstract The major driving factors of soil CO2 production , substrate supply, temperature, and water content , vary vertically within the soil profile, with the greatest temporal variations of these factors usually near the soil surface. Several studies have demonstrated that wetting and drying of the organic horizon contributes to temporal variation in summertime soil CO2 efflux in forests, but this contribution is difficult to quantify. The objectives of this study were to partition CO2 production vertically in a mixed hardwood stand of the Harvard Forest, Massachusetts, USA, and then to use that partitioning to evaluate how the relative contributions of CO2 production by genetic soil horizon vary seasonally and interannually. We measured surface CO2 efflux and vertical soil profiles of CO2 concentration, temperature, water content, and soil physical characteristics. These data were applied to a model of effective diffusivity to estimate CO2 flux at the top of each genetic soil horizon and the production within each horizon. A sensitivity analysis revealed sources of uncertainty when applying a diffusivity model to a rocky soil with large spatial heterogeneity, especially estimates of bulk density and volumetric water content and matching measurements of profiles and surface fluxes. We conservatively estimate that the O horizon contributed 40,48% of the total annual soil CO2 efflux. Although the temperature sensitivity of CO2 production varied across soil horizons, the partitioning of CO2 production by horizon did not improve the overall prediction of surface CO2 effluxes based on temperature functions. However, vertical partitioning revealed that water content covaried with CO2 production only in the O horizon. Large interannual variations in estimates of O horizon CO2 production indicate that this layer could be an important transient interannual source or sink of ecosystem C. [source]


    Contrasting soil respiration in young and old-growth ponderosa pine forests

    GLOBAL CHANGE BIOLOGY, Issue 12 2002
    J. IRVINE
    Abstract Three years of fully automated and manual measurements of soil CO2 efflux, soil moisture and temperature were used to explore the diel, seasonal and inter-annual patterns of soil efflux in an old-growth (250-year-old, O site) and recently regenerating (14-year-old, Y site) ponderosa pine forest in central Oregon. The data were used in conjunction with empirical models to determine which variables could be used to predict soil efflux in forests of contrasting ages and disturbance histories. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. Soil CO2 efflux at both sites showed large inter-annual variability that could be attributed to soil moisture availability in the deeper soil horizons (O site) and the quantity of summer rainfall (Y site). Seasonal patterns of soil CO2 efflux at the O site showed a strong positive correlation between diel mean soil CO2 efflux and soil temperature at 64 cm depth whereas diel mean soil efflux at the Y site declined before maximum soil temperature occurred during summer drought. The use of diel mean soil temperature and soil water potential inferred from predawn foliage water potential measurements could account for 80% of the variance of diel mean soil efflux across 3 years at both sites, however, the functional shape of the soil water potential constraint was site-specific. Based on the similarity of the decomposition rates of litter and fine roots between sites, but greater productivity and amount of fine litter detritus available for decomposition at the O site, we would expect higher rates of soil CO2 efflux at the O site. However, annual rates were only higher at the O site in one of the 3 years (597 ± 45 vs. 427 ± 80 g C m,2). Seasonal patterns of soil efflux at both sites showed influences of soil water limitations that were also reflected in patterns of canopy stomatal conductance, suggesting strong linkages between above and below ground processes. [source]


    Landscape influences on aluminium and dissolved organic carbon in streams draining the Hubbard Brook valley, New Hampshire, USA

    HYDROLOGICAL PROCESSES, Issue 9 2005
    Sheila M. Palmer
    Abstract Concentrations of both aluminium (Al) and dissolved organic carbon (DOC) in stream waters are likely to be regulated by factors that influence water flowpaths and residence times, and by the nature of the soil horizons through which waters flow. In order to investigate landscape-scale spatial patterns in streamwater Al and DOC, we sampled seven streams draining the Hubbard Brook valley in central New Hampshire. We observed considerable variation in stream chemistry both within and between headwater watersheds. Across the valley, concentrations of total monomeric aluminium (Alm) ranged from below detection limits (<0·7 µmol l,1) to 22·3 µmol l,1. In general, concentrations of Alm decreased as pH increased downslope. There was a strong relationship between organic monomeric aluminium (Alo) and DOC concentrations (R2 = 0·92). We observed the highest Alm concentrations in: (i) a watershed characterized by a steep narrow drainage basin and shallow soils and (ii) a watershed characterized by exceptionally deep forest floor soils and high concentrations of DOC. Forest floor depth and drainage area together explained much of the variation in ln Alm (R2 = 0·79; N = 45) and ln DOC (R2 = 0·87; N = 45). Linear regression models were moderately successful in predicting ln Alm and ln DOC in streams that were not included in model building. However, when back-transformed, predicted DOC concentrations were as much as 72% adrift from observed DOC concentrations and Alm concentrations were up to 51% off. This geographic approach to modelling Al and DOC is useful for general prediction, but for more detailed predictions, process-level biogeochemical models are required. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Determination of the soil organic carbon, nitrogen, available phosphorus and the combined aboveground plant materials in the semi-arid Mbulu District, Tanzania

    AFRICAN JOURNAL OF ECOLOGY, Issue 3 2009
    Mligo Cosmas
    Abstract Soil of the semi-arid Mbulu District is part of the tropical soils, covered with sparse trees, shrubs or grasses in which domestic grazing animals have prevented the wide spread of vegetation cover. The study aimed at determining soil organic carbon (OC), total nitrogen (N), available phosphorus (P) and the combined aboveground plant materials. Six study sites were established in which soil samples were collected at the depths of 0,5, 6,10 and 11,20 cm. Soil samples were analysed for OC, N and P as well as the levels of N and P in the combined aboveground materials of Panicum coloratum and Hyparrhenia filipendula. The percentage concentrations of OC, N and P were high in the top soil than in the deeper soil horizons. However, analysis of variance showed significant differences of OC in some sites whereas no difference for N and P between soil depth classes. OC was highly related with N and P along soil depth classes. It was concluded that the availability of N and P was because of the decomposition of organic matter in the soil. Soil N and P were highly related with the same in the combined aboveground plant materials. It was concluded that the increased concentration of N and P in the soil resulted into availability of the same in P. coloratum and H. filipendula. There was a very high variation in N and P among sites with different levels of intensity of grazing. It was concluded that grazing animals contributes to the redistribution of soil elements in the rangelands because they graze upon plant parts but the excreta are dropped away from the grazed spot. Résumé Le sol du district semi-aride de Mbulu fait partie de ces sols tropicaux couverts d'arbres, de buissons et d'herbes rares où le pâturage des animaux domestiques a empêché une large dispersion du couvert végétal. L'étude visait à déterminer le carbone organique (CO) du sol, l'azote (N) total, le phosphore (P) disponible et l'ensemble combiné de la matière végétale aérienne. Six sites d'étude furent établis, où l'on a récolté des échantillons de sol à des profondeurs de 0 à 5 cm, 6 à 10 cm, et 11 à 20 cm. Les échantillons de sols ont été analysés pour le CO, le N et le P ainsi que les niveaux de N et de P dans la matière végétale aérienne composée de Panicum coloratum et Hyparrhenia filipendula. Le pourcentage des concentrations de CO, N et P était plus élevé dans la couche supérieure du sol que dans les couches plus profondes. Cependant, une analyse de variance a révélé des différences significatives du CO dans certains sites alors qu'il n'y avait pas de différences pour N ni P aux différentes profondeurs de sol. Le CO était fortement liéà N et à P selon les classes de profondeur. On en a conclu que la disponibilité de N et de P était due à la décomposition de la matière organique dans le sol. Le N et le P du sol étaient fortement liés aux mêmes éléments présents dans la matière végétale aérienne combinée. On a conclu que la concentration accrue de N et de P dans le sol résultait de la concentration de ces mêmes éléments dans P. coloratum et H. filipendula. Il y a avait une très grande variation de N et de P entre des sites où l'intensité de pâturage était différente. On a conclu que les animaux qui pâturent contribuent à la redistribution des éléments du sol dans tous les endroits fréquentés étant donné qu'ils mangent des plantes à certains endroits mais que leurs excréments peuvent être rejetés ailleurs que les zones pâturées. [source]


    Vertical distribution of soil properties under short-rotation forestry in Northern Germany

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2010
    Petra Kahle
    Abstract Short-rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long-term no-tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3- and 6-year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short-rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic-C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic-C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial-C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of ,-glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long-term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil. [source]


    Comparison of critical limits for crop plant growth based on different indicators for the state of soil compaction

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2010
    Manfred Kaufmann
    Abstract Soil compaction affects physical soil condition, in particular aeration, soil strength, and water availability and has adverse effects on plant growth. Bulk density is the most frequently used indicator to describe the state of compaction of a soil. However, this parameter lacks a direct functional relationship with plant growth. Various indicators have been proposed to simultaneously characterize the state of compaction of agricultural soil and its suitability for plant growth. This paper examines and compares the critical limits for crop plant growth based on three of these indicators: packing density, least limiting water range, and S parameter (the latter is the slope of the soil water-retention curve in the inflexion point). In a first step, we reviewed the literature for published optimum and limiting values of bulk density and found that these values were highly dependent on clay and silt content. Converting them into corresponding values of packing density (composite index of bulk density and clay content), a value of 1.70 was found to effectively distinguish between optimum and limiting soil conditions for plant growth. In a second step, the packing density of 59 soil horizons sampled in N Switzerland was compared with the least limiting water range and the S parameter of these soil horizons (both determined by means of pedotransfer functions taken from the literature). A linear relationship between the three parameters was found, which allowed for a comparison of the published critical limits for plant growth based on these parameters. The critical limits of the three indicators, which had been postulated independently of each other in the literature, were found to agree well with each other. This means that all of them could equally be used to describe the compaction state of a soil and its physical suitability for plant growth. However, the proposed critical limits of packing density, least limiting water range, and S parameter still need further validation by field studies relating plant growth to soil compaction. [source]


    Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chloride

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2008
    Alexander Schöning
    Abstract The extraction of earth alkaline and alkali metals (Ca, Mg, K, Na), heavy metals (Mn, Fe, Cu, Zn, Cd, Pb) and Al by 1 M NH4NO3 and 0.5 M NH4Cl was compared for soil samples (texture: silt loam, clay loam) with a wide range of pH(CaCl2) and organic carbon (OC) from a forest area in W Germany. For each of these elements, close and highly significant correlations could be observed between the results from both methods in organic and mineral soil horizons. The contents of the base cations were almost convertible one-to-one. However, for all heavy metals NH4Cl extracted clearly larger amounts, which was mainly due to their tendency to form soluble chloro complexes with chloride ions from the NH4Cl solution. This tendency is very distinct in the case of Cd, Pb, and Fe, but also influences the results of Mn and Zn. In the case of Cd and Mn, and to a lower degree also in the case of Pb, Fe, and Zn, the effect of the chloro complexes shows a significant pH dependency. Especially for Cd, but also for Pb, Fe, Mn, Zn, the agreement between both methods increased, when pH(CaCl2) values and/or contents of OC were taken into account. In comparison to NH4Cl, NH4NO3 proved to be chemically less reactive and, thus, more suitable for the extraction of comparable fractions of mobile heavy metals. Since both methods lead to similar and closely correlated results with regard to base cations and Al, the use of NH4NO3 is also recommended for the extraction of mobile/exchangeable alkali, earth alkaline, and Al ions in soils and for the estimation of their contribution to the effective cation-exchange capacity (CEC). Consequently, we suggest to determine the mobile/exchangeable fraction of all elements using the NH4NO3 method. However, the applicability of the NH4NO3 method to other soils still needs to be investigated. [source]


    Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2008
    Wolfgang Wilcke
    Abstract In tropical montane forests, soil properties change with increasing altitude, and tree-growth decreases. In a tropical montane forest in Ecuador, we determined soil and tree properties along an altitudinal transect between 1960 and 2450 m asl. In different vegetation units, all horizons of three replicate profiles at each of eight sites were sampled and height, basal area, and diameter growth of trees were recorded. We determined pH and total concentrations of Al, C, Ca, K, Mg, Mn, N, Na, P, S, Zn, polyphenols, and lignin in all soil horizons and in the mineral soil additionally the effective cation-exchange capacity (CEC). The soils were Cambisols, Planosols, and Histosols. The concentrations of Mg, Mn, N, P, and S in the O horizons and of Al, C, and all nutrients except Ca in the A horizons correlated significantly negatively with altitude. The C : N, C : P, and C : S ratios increased, and the lignin concentrations decreased in O and A horizons with increasing altitude. Forest stature, tree basal area, and tree growth decreased with altitude. An ANOVA analysis indicated that macronutrients (e.g., N, P, Ca) and micronutrients (e.g., Mn) in the O layer and in the soil mineral A horizon were correlated with tree growth. Furthermore, lignin concentrations in the O layer and the C : N ratio in soil affected tree growth. These effects were consistent, even if the effect of altitude was accounted for in a hierarchical statistical model. This suggests a contribution of nutrient deficiencies to reduced tree growth possibly caused by reduced organic-matter turnover at higher altitudes. [source]


    Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model,

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2008
    Margit von Lützow
    Abstract Based on recent findings in the literature, we developed a process-oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co-action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo-mineral interactions for OM stabilization in the passive pool is well-known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site- and horizon-specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo-mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo-mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool. [source]


    Extraction of water-soluble organic matter from mineral horizons of forest soils

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2007
    Thilo Rennert
    Abstract Dissolved organic matter (DOM) is involved in many important biogeochemical processes in soil. As its collection is laborious, very often water-soluble organic matter (WSOM) obtained by extracting organic or mineral soil horizons with a dilute salt solution has been used as a substitute of DOM. We extracted WSOM (measured as water-soluble organic C, WSOC) from seven mineral horizons of three forest soils from North-Rhine Westphalia, Germany, with demineralized H2O, 0.01 M CaCl2, and 0.5 M K2SO4. We investigated the quantitative and qualitative effects of the extractants on WSOM and compared it with DOM collected with ceramic suction cups from the same horizons. The amounts of WSOC extracted differed significantly between both the extractants and the horizons. With two exceptions, K2SO4 extracted the largest amounts of WSOC (up to 126 mg C,kg,1) followed by H2O followed by CaCl2. The H2O extracts revealed by far the highest molar UV absorptivities at 254 nm (up to 5834 L mol,1,cm,1) compared to the salt solutions which is attributed to solubilization of highly aromatic compounds. The amounts of WSOC extracted did not depend on the amounts of Fe and Al oxides as well as on soil organic C and pH. Water-soluble organic matter extracted by K2SO4 bore the largest similarity to DOM due to relatively analogue molar absorptivities. Therefore, we recommend to use this extractant when trying to obtain a substitute for DOM, but as WSOM extraction is a rate-limited process, the suitability of extraction procedures to obtain a surrogate of DOM remains ambiguous. [source]


    Field measurements of the water content in the top soil using a new capacitance sensor with a flat sensitive volume

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2005
    Bernhard Ruth
    Abstract Water content directly near the soil surface plays an essential role for degradation of natural organic material and agrochemicals by soil microbes. Furthermore, the water losses by evaporation depend sensitively on the top-soil water content. Rain, irrigation, evaporation, and the water flow between the soil horizons together with the natural inhomogeneity of soils cause a high spatial gradient and a pronounced time dependence of the water content in the top soil. To understand processes in top soil such as redox gradients, the knowledge on ecological conditions in the top soil, which is subject to rapid changes, is essential. In order to meet the requirements for such field measurements, a capacitance sensor with a depth resolution of 1,cm and an active area of 7.5,cm × 14,cm was constructed and operated by a special electronic circuit. Field measurements using these sensors at 1,cm depth showed the high dynamics when measurements were carried out every 10,min. As simultaneous measurements of the soil temperature at 1,cm depth exhibit large temperature variations during the day, its influence on the measurements must be compensated for. As the data, measured during drying periods, allow the assessment of the temperature coefficient, the water content at a reference temperature can be calculated. The course of the water content reflects precipitation events and quantifies the drying of the soil, providing these parameters for process evaluation. Furthermore, the diurnal variation exhibits the drying during the day and the possible rewetting from deeper horizons during the night. Freilandmessungen des Wassergehalts im Oberboden mit einem neuen Kapazitätssensor mit flachem sensitiven Volumen Der Wassergehalt direkt an der Bodenoberfläche spielt für den mikrobiellen Abbau natürlicher organischer Substanz und von Agrochemikalien eine bedeutende Rolle. Darüber hinaus hängen die Wasserverluste durch Evaporation empfindlich vom Wassergehalt an der Bodenoberfläche ab. Regen, Bewässerung, Evaporation und die Wasserbewegung zwischen den Bodenhorizonten, sowie die natürliche Inhomogenität des Bodens verursachen einen großen Gradienten und eine ausgeprägte Zeitabhängigkeit des Wassergehalts und entsprechender Stofftransformationsprozesse im Oberboden. Für das Verständnis der Prozesse im Oberboden, wie z.,B. der Redox-Gradienten, ist die Kenntnis der ökologischen Bedingungen in dem sich schnell verändernden Oberboden unerlässlich. Um die Anforderungen für solche Feldmessungen zu erfüllen, wurde ein Kapazitätssensor mit einer Tiefenauflösung von 1,cm und einer aktiven Fläche von 7.5,cm × 14,cm konstruiert und mit einem speziellen elektronischen Schaltkreis betrieben. Feldmessungen in der Tiefe von 1,cm zeigen eine große Dynamik, wenn alle 10 min ein neuer Messwert erfasst wird. Da simultane Messungen der Bodentemperatur in 1,cm Tiefe hohe Variationen zeigen, muss deren Einfluss auf die Messung kompensiert werden. Da die Messungen während der Trockenperioden die Abschätzung des Temperaturkoeffizienten erlauben, kann der Wassergehalt bei einer Referenztemperatur errechnet werden. Die Messergebnisse korrespondieren mit Regenereignissen und erfassen die Austrocknung des Bodens, so dass damit Parameter für die Prozessberechnung zur Verfügung gestellt werden. Der Tagesgang zeigt Austrocknung während des Tages und die mögliche Wiederbefeuchtung aus tieferen Horizonten während der Nacht. [source]


    Evaluation of pedotransfer functions predicting hydraulic properties of soils and deeper sediments

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2004
    Bernhard Wagner
    Abstract Eight pedotransfer functions (PTF) originally calibrated to soil data are used for evaluation of hydraulic properties of soils and deeper sediments. Only PTFs are considered which had shown good results in previous investigations. Two data sets were used for this purpose: a data set of measured pressure heads vs. water contents of 347 soil horizons (802 measured pairs) from Bavaria (Southern Germany) and a data set of 39 undisturbed samples of tertiary sediments from deeper ground (down to 100 m depth) in the molasse basin north of the Alps, containing 840 measured water contents vs. pressure head and unsaturated hydraulic conductivity. A statistical analysis of the PTFs shows that their performance is quite similar with respect to predicting soil water contents. Less satisfactory results were obtained when the PTFs were applied to prediction of water content of sediments from deeper ground. The predicted unsaturated hydraulic conductivities show about the same uncertainty as for soils in a previous study. Systematic deviations of predicted values indicate that an adaptation of the PTFs to the specific conditions of deeper ground should be possible in order to improve predictions. Bewertung von Pedotransferfunktionen zur Prognose der hydraulischen Kennwerte von Böden und tieferen Sedimenten Acht Pedotransferfunktionen (PTF), die ursprünglich anhand von Bodendaten kalibriert wurden, werden für die Prognose der hydraulischen Kennwerte sowohl von Böden als auch tieferen Sedimenten eingesetzt. Es wurden nur PTFs untersucht, die in anderen Untersuchungen gute Ergebnisse geliefert hatten. Zwei Datensätze standen für die Bewertung der PTFs zur Verfügung: ein Datensatz mit gemessenen Saugspannungen vs. Wassergehalten von 347 über ganz Bayern verteilten Bodenhorizonten (802 Messpaare) und ein Datensatz von 39 ungestörten Sedimentproben der miozänen Oberen Süßwassermolasse (OSM) des voralpinen Molassebeckens aus Tiefen von bis zu 100 m mit insgesamt 840 gemessenen Wassergehalten vs. Saugspannungen und ungesättigten Wasserleitfähigkeiten. Die statistische Analyse der acht PTFs zeigt, dass die meisten untersuchten PTFs die gemessenen Wassergehalte der Böden ungefähr gleich gut abschätzen. Alle PTFs ergaben bei der Vorhersage der Wassergehalte der tieferen Sedimente deutlich weniger gute Ergebnisse. Dennoch konnten mit den PTFs die ungesättigten Wasserleitfähigkeiten mit etwa der gleichen Genauigkeit wie bei Böden in einer früheren Studie prognostiziert werden. Systematische Abweichungen der Prognosewerte zeigen, dass eine spezifische Anpassung der PTFs auf die Bedingungen des tieferen Untergrundes zur Verbesserung der Vorhersagegenauigkeit möglich sein müsste. [source]