Sockeye Salmon (sockeye + salmon)

Distribution by Scientific Domains


Selected Abstracts


RECENT ECOLOGICAL DIVERGENCE DESPITE MIGRATION IN SOCKEYE SALMON (ONCORHYNCHUS NERKA)

EVOLUTION, Issue 6 2010
Scott A. Pavey
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (,500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000,15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. [source]


DOES VARIATION IN SELECTION IMPOSED BY BEARS DRIVE DIVERGENCE AMONG POPULATIONS IN THE SIZE AND SHAPE OF SOCKEYE SALMON?

EVOLUTION, Issue 5 2009
Stephanie M. Carlson
Few studies have determined whether formal estimates of selection explain patterns of trait divergence among populations, yet this is one approach for evaluating whether the populations are in equilibria. If adaptive divergence is complete, directional selection should be absent and stabilizing selection should prevail. We estimated natural selection, due to bear predation, acting on the body size and shape of male salmon in three breeding populations that experience differing predation regimes. Our approach was to (1) estimate selection acting within each population on each trait based on an empirical estimate of reproductive activity, (2) test for trait divergence among populations, and (3) test whether selection coefficients were correlated with trait divergence among populations. Stabilizing selection was never significant, indicating that these populations have yet to attain equilibria. Directional selection varied among populations in a manner consistent with trait divergence, indicating ongoing population differentiation. Specifically, the rank order of the creeks in terms of patterns of selection paralleled the rank order in terms of size and shape. The shortest and least deep-bodied males had the highest reproductive activity in the creek with the most intense predation and longer and deeper-bodied males were favored in the creeks with lower predation risk. [source]


Pacific Salmon Extinctions: Quantifying Lost and Remaining Diversity

CONSERVATION BIOLOGY, Issue 4 2007
RICHARD G. GUSTAFSON
biodiversidad; diversidad de salmones; extinción de poblaciones; historia de vida de salmones Abstract:,Widespread population extirpations and the consequent loss of ecological, genetic, and life-history diversity can lead to extinction of evolutionarily significant units (ESUs) and species. We attempted to systematically enumerate extinct Pacific salmon populations and characterize lost ecological, life history, and genetic diversity types among six species of Pacific salmon (Chinook [Oncorhynchus tshawytscha], sockeye [O. nerka], coho [O. kisutch], chum [O. keta], and pink salmon [O. gorbuscha] and steelhead trout [O. mykiss]) from the western contiguous United States. We estimated that, collectively, 29% of nearly 1400 historical populations of these six species have been lost from the Pacific Northwest and California since Euro-American contact. Across all species there was a highly significant difference in the proportion of population extinctions between coastal (0.14 extinct) and interior (0.55 extinct) regions. Sockeye salmon (which typically rely on lacustrine habitats for rearing) and stream-maturing Chinook salmon (which stay in freshwater for many months prior to spawning) had significantly higher proportional population losses than other species and maturation types. Aggregate losses of major ecological, life-history, and genetic biodiversity components across all species were estimated at 33%, 15%, and 27%, respectively. Collectively, we believe these population extirpations represent a loss of between 16% and 30% of all historical ESUs in the study area. On the other hand, over two-thirds of historical Pacific salmon populations in this area persist, and considerable diversity remains at all scales. Because over one-third of the remaining populations belong to threatened or endangered species listed under the U.S. Endangered Species Act, it is apparent that a critical juncture has been reached in efforts to preserve what remains of Pacific salmon diversity. It is also evident that persistence of existing, and evolution of future, diversity will depend on the ability of Pacific salmon to adapt to anthropogenically altered habitats. Resumen:,Las extirpaciones generalizadas de poblaciones y la consecuente pérdida de diversidad ecológica, genética y de historia natural puede llevar a la extinción de unidades evolutivamente significativas (UES) y especies. Intentamos enumerar sistemáticamente a las poblaciones extintas de salmón del Pacífico y caracterizar a los tipos de diversidad ecológica, de historia natural y genética de seis especies de salmón del Pacífico Oncorhynchus tshawytscha, O. nerka, O. kisutch, O. keta, y O. gorbuscha; y trucha O. mykiss en el occidente de Estados Unidos. Estimamos que, colectivamente, se ha perdido a 29% de casi 1400 poblaciones históricas de estas seis especies en el Pacífico Noroeste y California desde la colonización europea. En todas las especies hubo una diferencia altamente significativa en la proporción de extinción de poblaciones entre regiones costeras (0.14 extintas) e interiores (0.55 extintas). O. nerka (que típicamente cría en hábitats lacustres) y O. tshawytscha (que permanece en agua dulce por muchos meses antes del desove) tuvieron pérdidas poblacionales significativamente mayores que las otras especies y tipos de maduración. Se estimó que las pérdidas agregadas de componentes mayores de la biodiversidad ecológica, de historia natural y genética en todas las especies fueron de 33%, 15% y 27%, respectivamente. Colectivamente, consideramos que estas extirpaciones de poblaciones representan una pérdida entre 16% y 30% de todas las UES históricas en el área de estudio. Por otro lado, más de dos tercios de las poblaciones históricas de salmón del Pacífico persisten en esta área, y aun hay considerable diversidad en todas las escalas. Debido a que más de un tercio de las poblaciones restantes pertenecen a especies enlistadas como amenazadas o en peligro en el Acta de Especies en Peligro de E. U. A., es evidente que se ha llegado a una disyuntiva crítica en los esfuerzos para preservar lo que queda de la diversidad de salmón del Pacífico. También es evidente que la persistencia de la diversidad existente, y su futura evolución, dependerá de la habilidad del salmón del Pacífico para adaptarse a hábitats alterados antropogénicamente. [source]


Tooth size and skin thickness in mature sockeye salmon: evidence for habitat constraints and variable investment between the sexes

ECOLOGY OF FRESHWATER FISH, Issue 3 2006
S. P. Johnson
Abstract ,, Pacific salmon develop many sexually dimorphic features at maturity, and the extent of development varies among populations. In this study, we compared a suite of traits including body length, body depth, jaw length, tooth size and skin mass in male and female sockeye salmon breeding in beach and creek habitats. Both tooth size and skin mass varied positively with body length. Within each of the breeding habitats, males had longer teeth than females, and within each sex, beach spawners had longer teeth than creek spawners. Males also had heavier skin than females in each habitat but, unlike the case with tooth size, creek spawners showed a much stronger relationship between skin mass and body length than did beach spawners. Tooth length was positively related to jaw length and skin mass among individuals within a given sex and habitat. Taken together, these results suggested that variation in tooth size parallels variation in other sexually dimorphic traits. Males and beach spawners tend to exhibit large trait values relative to females and creek spawners, and ,well-endowed' individuals displayed high values of all traits rather than a trade-off as might occur if investment in one trait compromised investment in others. However, the finding that creek fish tended to have thicker skin for a given body length than did beach fish suggested that factors other than merely defense against conspecifics during battle, such as abrasion and desiccation resistance in small streams, may influence the evolution of skin mass in mature sockeye salmon. [source]


Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2007
Irene Gregory-Eaves
Abstract Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently, however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using ,15N and ,13C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the ,15N and ,13C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish. [source]


RECENT ECOLOGICAL DIVERGENCE DESPITE MIGRATION IN SOCKEYE SALMON (ONCORHYNCHUS NERKA)

EVOLUTION, Issue 6 2010
Scott A. Pavey
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (,500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000,15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. [source]


A metapopulation perspective for salmon and other anadromous fish

FISH AND FISHERIES, Issue 4 2007
Nicolas Schtickzelle
Abstract Salmonids are an important component of biodiversity, culture and economy in several regions, particularly the North Pacific Rim. Given this importance, they have been intensively studied for about a century, and the pioneering scientists recognized the critical link between population structure and conservation. Spatial structure is indeed of prime importance for salmon conservation and management. At first glance, the essence of the metapopulation concept, i.e. a population of populations, widely used on other organisms like butterflies, seems to be particularly relevant to salmon, and more generally to anadromous fish. Nevertheless, the concept is rarely used, and barely tested. Here, we present a metapopulation perspective for anadromous fish, assessing in terms of processes rather than of patterns the set of necessary conditions for metapopulation dynamics to exist. Salmon, and particularly sockeye salmon in Alaska, are used as an illustrative case study. A review of life history traits indicates that the three basic conditions are likely to be fulfilled by anadromous salmon: (i) the spawning habitat is discrete and populations are spatially separated by unsuitable habitat; (ii) some asynchrony is present in the dynamics of more or less distant populations and (iii) dispersal links populations because some salmon stray from their natal population. The implications of some peculiarities of salmon life history traits, unusual in classical metapopulations, are also discussed. Deeper understanding of the population structure of anadromous fish will be advanced by future studies on specific topics: (i) criteria must be defined for the delineation of suitable habitats that are based on features of the biotope and not on the presence of fish; (ii) the collection of long-term data and the development of improved methods to determine age structure are essential for correctly estimating levels of asynchrony between populations and (iii) several key aspects of dispersal are still poorly understood and need to be examined in detail: the spatial and temporal scales of dispersal movements, the origin and destination populations instead of simple straying rates, and the relative reproductive success of immigrants and residents. [source]


Spatial correlation patterns in coastal environmental variables and survival rates of salmon in the north-east Pacific Ocean

FISHERIES OCEANOGRAPHY, Issue 4 2002
Franz J. Mueter
We examined spatial correlations for three coastal variables [upwelling index, sea surface temperature (SST), and sea surface salinity (SSS)] that might affect juvenile salmon (Oncorhynchus spp.) during their early marine life. Observed correlation patterns in environmental variables were compared with those in survival rates of pink (O. gorbuscha), chum (O. keta), and sockeye (O. nerka) salmon stocks to help identify appropriate variables to include in models of salmon productivity. Both the upwelling index and coastal SST were characterized by strong positive correlations at short distances, which declined slowly with distance in the winter months, but much more rapidly in the summer. The SSS had much weaker and more variable correlations at all distances throughout the year. The distance at which stations were no longer correlated (spatial decorrelation scale) was largest for the upwelling index (> 1000 km), intermediate for SST (400,800 km in summer), and shortest for SSS (< 400 km). Survival rate indices of salmon showed moderate positive correlations among adjacent stocks that decreased to zero at larger distances. Spatial decorrelation scales ranged from approximately 500 km for sockeye salmon to approximately 1000 km for chum salmon. We conclude that variability in the coastal marine environment during summer, as well as variability in salmon survival rates, are dominated by regional scale variability of several hundred to 1000 km. The correlation scale for SST in the summer most closely matched the observed correlation scales for survival rates of salmon, suggesting that regional-scale variations in coastal SST can help explain the observed regional-scale covariation in survival rates among salmon stocks. [source]


Influence of the marine abundance of pink (Oncorhynchus gorbuscha) and sockeye salmon (O. nerka) on growth of Ozernaya River sockeye

FISHERIES OCEANOGRAPHY, Issue 1 2001
V. F. Bugaev
The length and weight of Russian sockeye (Oncorhynchus nerka) returning to the Ozernaya River (Kamchatka) was substantially reduced in years when the ocean abundances of Kamchatkan pink (O. gorbuscha) and sockeye salmon were high. We found that the density-dependent reduction in sockeye growth on a per-capita basis was greater for sockeye than for pink salmon. However, the overall effect of pink salmon abundance on sockeye growth was greater because of the higher numerical abundance of pink salmon. The strongest statistical relationships were found for sockeye from separate age groups; pooled data combining all age classes were statistically insignificant. We estimate that, if pink salmon were absent, the most strongly affected age group of sockeye salmon (2.1 males) would weigh twice as much at maturity than if pink salmon populations from eastern and western Kamchatka were both simultaneously at peak observed abundances. Trophic competition in the ocean between pink and sockeye salmon can therefore have a significant influence on the productivity of sockeye populations for the most strongly affected age groups. These effects are large enough that they should be explicitly considered in the management of salmon populations. [source]


Energetics and morphology of sockeye salmon: effects of upriver migratory distance and elevation

JOURNAL OF FISH BIOLOGY, Issue 3 2004
G. T. Crossin
Depending on population, wild Fraser River sockeye salmon Oncorhynchus nerka travel distances of <100 km to >1100 km and ascend elevations ranging from near sea-level to 1200 m to reach spawning areas. Populations embarking on distant, high elevation migrations (i.e. Early Stuart, Chilko and Horsefly populations) began their upriver spawning migrations with higher densities of somatic energy (c. 9·2 to 9·8 MJ kg,1) and fewer eggs (c. 3200 to 3800) than populations making shorter, low elevation migrations (i.e. Weaver and Adams; c. 7·1 to 8·3 MJ kg,1 gross somatic energy and c. 4300 to 4700 eggs). Populations making difficult upriver migrations also had morphologies that were smaller and more fusiform than populations making less difficult migrations, traits that may facilitate somatic energy conservation by reducing transport costs. Indeed, fish travelling long distances expended less somatic energy per unit of migratory difficulty than those travelling shorter distances (2·8 to 3·8 kJ v. 10,1400 kJ). Consistent with evolutionary theory, difficult migrations appear to select for energy efficiency but ultimately fish making more difficult migrations produce fewer eggs, even when differences in body length have been accounted for. Despite large among-population differences in somatic energy at the start of upriver migration, all populations completed migration and spawning, and subsequently died, with c. 4 MJ kg,1 of energy remaining, a level which may reflect a threshold to sustain life. [source]


Microsatellite identification of individual sockeye salmon in Barkley Sound, British Columbia

JOURNAL OF FISH BIOLOGY, Issue 4 2002
T. D. Beacham
Population structure of sockeye salmon Oncorhynchus nerka in Barkley Sound, British Columbia, Canada was examined by analysis of microsatellite variation at 14 loci in three populations sampled in each of 3 years. The mean FST over all 14 loci was 0·063. Differences among populations accounted for 12 times the variation observed among years within populations. The number of alleles present at a locus was related to the power of the locus to provide accurate identification of individuals to population. The more alleles that were present at a locus, the greater was the power of the locus for individual identification. Individuals were correctly classified to one of three lakes of origin at a rate of 89%, and to one of two river drainages at a rate of 96%. [source]


INHIBITION OF LISTERIA INNOCUA AND L. MONOCYTOGENES IN A LABORATORY MEDIUM AND COLD-SMOKED SALMON CONTAINING LIQUID SMOKE

JOURNAL OF FOOD SAFETY, Issue 2 2001
SUSAN M. VITT
ABSTRACT Five commercial liquid smokes were tested in vitro and the most inhibitory to Listeria monocytogenes ATCC 19115 and L. innocua ATCC 33090 was Charsol Supreme. Chum salmon samples (100-g each) were brined, dipped for 15 s at varying concentrations of liquid smoke, inoculated with L. innocua, cold-processed and analyzed. Liquid smoke concentrations of 60,100% reduced L. innocua by 3-log10/g in the final product. Dwell times of 15 s to 5 min using 60% liquid smoke gradually decreased Listeria survival with an optimum 5-min dip. Isoeugenol was antilisterial in vitro but lacked synergism with liquid smoke in cold-smoked salmon. An immunoassay kit detected low inoculum levels (< 100 CFU/g) of L. innocua in one of three samples that were treated with liquid smoke for two and four minutes. Charsol Supreme was antilisterial but could not be relied on to totally eliminate Listeria in cold-smoked salmon. Panelists found the 0 to 2-min dipped sockeye salmon slightly desirable with no significant (p < 0.05) differences. The 5-min treatment was significantly (p < 0.05) darker, scored lower in desirability and flavor and contained 93 ppm of phenolic compounds. [source]