Home About us Contact | |||
Snow Water Equivalent (snow + water_equivalent)
Selected AbstractsAnalysis of snow cover variability and change in Québec, 1948,2005HYDROLOGICAL PROCESSES, Issue 14 2010Ross D. Brown Abstract The spatial and temporal characteristics of annual maximum snow water equivalent (SWEmax) and fall and spring snow cover duration (SCD) were analysed over Québec and adjacent area for snow seasons 1948/1949,2004/2005 using reconstructed daily snow depth and SWE. Snow cover variability in Québec was found to be significantly correlated with most of the major atmospheric circulation patterns affecting the climate of eastern North America but the influence was characterized by strong multidecadal-scale variability. The strongest and most consistent relationship was observed between the Pacific Decadal Oscillation (PDO) and fall SCD variability over western Québec. El Niño-Southern Oscillation (ENSO) was found to have a limited impact on Québec snow cover. Evidence was found for a shift in circulation over the study region around 1980 associated with an abrupt increase in sea level pressure (SLP) and decreases in winter precipitation, snow depth and SWE over much of southern Québec, as well as changes in the atmospheric patterns with significant links to snow cover variability. Trend analysis of the reconstructed snow cover over 1948,2005 provided evidence of a clear north,south gradient in SWEmax and spring SCD with significant local decreases over southern Québec and significant local increases over north-central Québec. The increase in SWEmax over northern Québec is consistent with proxy data (lake levels, tree growth forms, permafrost temperatures), with hemispheric-wide trends of increasing precipitation over higher latitudes, and with projections of global climate models (GCMs). Copyright © 2010 Her Majesty the Queen in right of Canada. Published by John Wiley & Sons. Ltd [source] Modified passive capillary samplers for collecting samples of snowmelt infiltration for stable isotope analysis in remote, seasonally inaccessible watersheds 2: field evaluationHYDROLOGICAL PROCESSES, Issue 7 2010Marty D. Frisbee Abstract Twelve modified passive capillary samplers (M-PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil-water endmembers in the watershed. The seasonally integrated stable isotope composition (,18O and ,2H) of soil-meltwater collected with M-PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow-subsurface measurements. The M-PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow-subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M-PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M-PCAPS design appears to be a useful, robust methodology to quantify soil-water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil-meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd. [source] Modelling blowing snow redistribution to prairie wetlandsHYDROLOGICAL PROCESSES, Issue 18 2009X. Fang Abstract Blowing snow transports and sublimates a substantial portion of the seasonal snowfall in the prairies of western Canada. Snow redistribution is an important feature of prairie hydrology as deep snowdrifts provide a source of meltwater to replenish ponds and generate streamflow in this dry region. The spatial distribution of snow water equivalent in the spring is therefore of great interest. A test of the distributed and aggregated modelling strategies for blowing snow transport and sublimation was conducted at the St. Denis National Wildlife Area in the rolling, internally drained prairie pothole region east of Saskatoon, Saskatchewan, Canada. A LiDAR-based DEM and aerial photograph-based vegetation cover map were available for this region. A coupled complex windflow and blowing snow model was run with 262,144 6 m × 6 m grid cells to produce spatially distributed estimates of seasonal blowing snow transport and sublimation. The calculation was then aggregated to seven landscape units that represented the major influences of surface roughness, topography and fetch on blowing snow transport and sublimation. Both the distributed and aggregated simulations predicted similar end-of-winter snow water equivalent with substantial redistribution of blowing snow from exposed sparsely vegetated sites across topographic drainage divides to the densely vegetated pothole wetlands. Both simulations also agreed well with snow survey observations. While the distributed calculations provide a fascinating and detailed visual image of the interaction of complex landscapes and blowing snow redistribution and sublimation, it is clear that blowing snow transport and sublimation calculations can be successfully aggregated to the spatial scale of the major landscape units in this environment. This means that meso and macroscale hydrological models can represent blowing snow redistribution successfully in the prairies. Copyright © 2009 John Wiley & Sons, Ltd. [source] Towards an energy-based runoff generation theory for tundra landscapesHYDROLOGICAL PROCESSES, Issue 23 2008William L. Quinton Abstract Runoff hydrology has a large historical context concerned with the mechanisms and pathways of how water is transferred to the stream network. Despite this, there has been relatively little application of runoff generation theory to cold regions, particularly the expansive treeless environments where tundra vegetation, permafrost, and organic soils predominate. Here, the hydrological cycle is heavily influenced by 1) snow storage and release, 2) permafrost and frozen ground that restricts drainage, and 3) the water holding capacity of organic soils. While previous research has adapted temperate runoff generation concepts such as variable source area, transmissivity feedback, and fill-and-spill, there has been no runoff generation concept developed explicitly for tundra environments. Here, we propose an energy-based framework for delineating runoff contributing areas for tundra environments. Aerodynamic energy and roughness height control the end-of-winter snow water equivalent, which varies orders of magnitude across the landscape. Radiant energy in turn controls snowmelt and ground thaw rates. The combined spatial pattern of aerodynamic and radiant energy control flow pathways and the runoff contributing areas of the catchment, which are persistent on a year-to-year basis. While ground surface topography obviously plays an important role in the assessment of contributing areas, the close coupling of energy to the hydrological cycles in arctic and alpine tundra environments dictates a new paradigm. Copyright © 2008 John Wiley & Sons, Ltd. [source] Early findings in comparison of AMSR-E/Aqua L3 global snow water equivalent EASE-grids data with in situ observations for Eastern TurkeyHYDROLOGICAL PROCESSES, Issue 15 2008A. Emre Tekeli Abstract Microwave remote sensing (RS) enables the direct determination of snow water equivalent (SWE), which is an important snow parameter for water resources management. The accuracy of remotely sensed SWE values has always been a concern. Previous studies evaluated global SWE monitoring. However, regional effects such as vegetation, snow grain size, snow density and local meteorological conditions may lead to uncertainties. Thus, regional validation studies that quantify and help to understand these uncertainties and possible error sources are important both for algorithm development and accurate SWE computation. In this study, data of Advanced Microwave Scanning Radiometer (AMSR-E)/Aqua level 3 global SWE Equal Area Scalable Earth (EASE) Grids are compared with ground measurements for 2002,2003 winter period for Eastern Turkey, which includes the headwaters of the Euphrates and Tigris rivers and is fed largely from snowmelt. Thus, accurate determination of SWE is important in optimum resource management for both Turkey and downstream nations. Analyses indicated that AMSR-E generally overestimated SWE in early season. As winter progressed, higher in situ SWE values with respect to AMSR-E were observed which led to underestimation by AMSR-E. The differences between AMSR-E and in situ SWE varied between , 218 and 93 mm. Use of in situ snow densities lead the correlation coefficient between AMSR-E and in situ SWE to increase from 0·10 to 0·32. Underestimation of SWE by AMSR-E occurs after some warm periods, while overestimations occur following refreezing. On rainy days or some days after precipitation within the warm periods, zero AMSR-E SWE values are observed. Copyright © 2008 John Wiley & Sons, Ltd. [source] Snow-distribution and melt modelling for glaciers in Zackenberg river drainage basin, north-eastern GreenlandHYDROLOGICAL PROCESSES, Issue 24 2007Sebastian H. Mernild Abstract A physically based snow-evolution modelling system (SnowModel) that includes four sub-models: MicroMet, EnBal, SnowPack, and SnowTran-3D, was used to simulate eight full-year evolutions of snow accumulation, distribution, sublimation, and surface melt from glaciers in the Zackenberg river drainage basin, in north-east Greenland. Meteorological observations from two meteorological stations were used as model inputs, and spatial snow depth observations, snow melt depletion curves from photographic time lapse, and a satellite image were used for model testing of snow and melt simulations, which differ from previous SnowModel tests methods used on Greenland glaciers. Modelled test-period-average end-of-winter snow water equivalent (SWE) depth for the depletion area differs by a maximum of 14 mm w.eq., or ,6%, more than the observed, and modelled test-period-average snow cover extent differs by a maximum of 5%, or 0·8 km2, less than the observed. Furthermore, comparison with a satellite image indicated a 7% discrepancy between observed and modelled snow cover extent for the entire drainage basin. About 18% (31 mm w.eq.) of the solid precipitation was returned to the atmosphere by sublimation. Modelled mean annual snow melt and glacier ice melt for the glaciers in the Zackenberg river drainage basin from 1997 through 2005 (September,August) averaged 207 mm w.eq. year,1 and 1198 mm w.eq. year,1, respectively, yielding a total averaging 1405 mm w.eq. year,1. Total modelled mean annual surface melt varied from 960 mm w.eq. year,1 to 1989 mm w.eq. year,1. The surface-melt period started between mid-May and the beginning of June and lasted until mid-September. Annual calculated runoff averaged 1487 mm w.eq. year,1 (,150 × 106 m3) (1997,2005) with variations from 1031 mm w.eq. year,1 to 2051 mm w.eq. year,1. The model simulated a total glacier recession averaging , 1347 mm w.eq. year,1 (,136 × 106 m3) (1997,2005), which was almost equal to previous basin average hydrological water balance storage studies , 244 mm w.eq. year,1 (,125 × 106 m3) (1997,2003). Copyright © 2007 John Wiley & Sons, Ltd. [source] Estimating the snow water equivalent on the Gatineau catchment using hierarchical Bayesian modellingHYDROLOGICAL PROCESSES, Issue 4 2006Ousmane Seidou Abstract One of the most important parameters for spring runoff forecasting is the snow water equivalent on the watershed, often estimated by kriging using in situ measurements, and in some cases by remote sensing. It is known that kriging techniques provide little information on uncertainty, aside from the kriging variance. In this paper, two approaches using Bayesian hierarchical modelling are compared with ordinary kriging; Bayesian hierarchical modelling is a flexible and general statistical approach that uses observations and prior knowledge to make inferences on both unobserved data (snow water equivalent on the watershed where there is no measurements) and on the parameters (influence of the covariables, spatial interactions between the values of the process at various sites). The first approach models snow water equivalent as a Gaussian spatial process, for which the mean varies in space, and the other uses the theory of Markov random fields. Although kriging and the Bayesian models give similar point estimates, the latter provide more information on the distribution of the snow water equivalent. Furthermore, kriging may considerably underestimate interpolation error. Copyright © 2006 Environment Canada. Published by John Wiley & Sons, Ltd. [source] Long-term investigations of the snow cover in a subalpine semi-forested catchmentHYDROLOGICAL PROCESSES, Issue 2 2006Manfred Stähli Abstract To improve spring runoff forecasts from subalpine catchments, detailed spatial simulations of the snow cover in this landscape is obligatory. For more than 30 years, the Swiss Federal Research Institute WSL has been conducting extensive snow cover observations in the subalpine watershed Alptal (central Switzerland). This paper summarizes the conclusions from past snow studies in the Alptal valley and presents an analysis of 14 snow courses located at different exposures and altitudes, partly in open areas and partly in forest. The long-term performance of a physically based numerical snow,vegetation,atmosphere model (COUP) was tested with these snow-course measurements. One single parameter set with meteorological input variables corrected to the prevailing local conditions resulted in a convincing snow water equivalent (SWE) simulation at most sites and for various winters with a wide range of snow conditions. The snow interception approach used in this study was able to explain the forest effect on the SWE as observed on paired snow courses. Finally, we demonstrated for a meadow and a forest site that a successful simulation of the snowpack yields appropriate melt rates. Copyright © 2006 John Wiley & Sons, Ltd. [source] Factors governing the formation and persistence of layers in a subalpine snowpackHYDROLOGICAL PROCESSES, Issue 7 2004David Gustafsson Abstract The layered structure of a snowpack has a great effect on several important physical processes, such as water movement, reflection of solar radiation or avalanche release. Our aim was to investigate what factors are most important with respect to the formation and persistence of distinct layers in a subalpine environment. We used a physically based numerical one-dimensional model to simulate the development of a snowpack on a subalpine meadow in central Switzerland during one winter season (1998,99). A thorough model validation was based on extensive measurement data including meteorological and snow physical parameters. The model simulated the snow water equivalent and the depth of the snowpack as well as the energy balance accurately. The observed strong layering of the snowpack, however, was not reproduced satisfactorily. In a sensitivity analysis, we tested different model options and parameter settings significant for the formation of snow layers. The neglection of effects of snow microstructure on the compaction rate, and the current description of the water redistribution inside the snowpack, which disregard capillary barrier effects, preferential flow and lateral water flow, were the major limitations for a more realistic simulation of the snowpack layering. Copyright © 2004 John Wiley & Sons, Ltd. [source] Effects of the El Niño,southern oscillation on temperature, precipitation, snow water equivalent and resulting streamflow in the Upper Rio Grande river basinHYDROLOGICAL PROCESSES, Issue 6 2004Songweon Lee Abstract Snowmelt runoff dominates streamflow in the Upper Rio Grande (URG) basin of New Mexico and Colorado. Annual variations in streamflow timing and volume at most stations in the region are strongly influenced by the El Niño,southern oscillation (ENSO) through its modulation of the seasonal cycles of temperature and precipitation, and hence on snow accumulation and melting. After removing long-term trends over the study period (water years 1952,99), the dependence of monthly temperature, precipitation, snow water equivalent (SWE) at snowcourse stations, and streamflow throughout the URG on ENSO was investigated using composite analyses of the detrended residuals and through dependence of the residuals on the Climate Prediction Center southern oscillation index during the preceding summer and fall. The climate of La Niña years was found to differ significantly from either El Niño or neutral years. Moreover, significant climatological ENSO-related effects are confined to certain months, predominantly at the beginning and end of the winter season. In particular, March of La Niña years is significantly warmer and drier than during either El Niño or neutral years, and November of El Niño years is significantly colder and wetter. Differences in temperature and precipitation lead to significant differences in SWE and streamflow in the URG between the three ENSO phases. Copyright © 2004 John Wiley & Sons, Ltd. [source] Evaluation of spatial variability in snow water equivalent for a high mountain catchmentHYDROLOGICAL PROCESSES, Issue 3 2004S. P. Anderton Abstract Multivariate statistical analysis was used to explore relationships between catchment topography and spatial variability in snow accumulation and melt processes in a small headwater catchment in the Spanish Pyrenees. Manual surveys of snow depth and density provided information on the spatial distribution of snow water equivalent (SWE) and its depletion over the course of the 1997 and 1998 melt seasons. A number of indices expressing the topographic control on snow processes were extracted from a detailed digital elevation model of the catchment. Bivariate screening was used to assess the relative importance of these topographic indices in controlling snow accumulation at the start of the melt season, average melt rates and the timing of snow disappearance. This suggested that topographic controls on the redistribution of snow by wind are the most important influence on snow distribution at the start of the melt season. Furthermore, it appeared that spatial patterns of snow disappearance were largely determined by the distribution of snow water equivalent (SWE) at the start of the melt season, rather than by spatial variability in melt rates during the melt season. Binary regression tree models relating snow depth and disappearance date to terrain indices were then constructed. These explained 70,80% of the variance in the observed data. As well as providing insights into the influence of topography on snow processes, it is suggested that the techniques presented herein could be used in the parameterization of distributed snowmelt models, or in the design of efficient stratified snow surveys. Copyright © 2003 John Wiley & Sons, Ltd. [source] Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of waterHYDROLOGICAL PROCESSES, Issue 6 2003A. Sugimoto Abstract Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its ,18O showed large interannual variation depending on the amount of summer rainfall. The soil water ,18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the ,18O of soil water increased due to percolation of summer rain with high ,18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the ,18O because of the low ,18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra-annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd. [source] Effects of land-cover changes on the hydrological response of interior Columbia River basin forested catchmentsHYDROLOGICAL PROCESSES, Issue 13 2002James R. VanShaar Abstract The topographically explicit distributed hydrology,soil,vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf-area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land-cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd. [source] The simulation of heat and water exchange at the land,atmosphere interface for the boreal grassland by the land-surface model SWAPHYDROLOGICAL PROCESSES, Issue 10 2002Yeugeniy M. Gusev Abstract The major goal of this paper is to evaluate the ability of the physically based land surface model SWAP to reproduce heat and water exchange processes that occur in mid-latitude boreal grassland regions characterized by a clear seasonal course of hydrometeorological conditions, deep snow cover, seasonally frozen soil, as well as seasonally mobile and shallow water table depth. A unique set of hydrometeorological data measured over 18 years (1966,83) at the Usadievskiy catchment (grassland) situated in the central part of Valdai Hills (Russia) provides an opportunity to validate the model. To perform such validation in a proper way, SWAP is modified to take into account a shallow water table depth. The new model differs from its previous version mainly in the parameterization of water transfer in a soil column; besides that, it includes soil water,groundwater interaction. A brief description of the new version of SWAP and the results of its validation are presented. Simulations of snow density, snow depth, snow water equivalent, daily snow surface temperature, daily evaporation from snow cover, water yield of snow cover, water table depth, depth of soil freezing and thawing, soil water storage in two layers, daily surface and total runoff from the catchment, and monthly evaporation from the catchment are validated against observations on a long-term basis. The root-mean-square errors (RMSEs) of simulations of soil water storage in the layers of 0,50 cm and 0,100 cm are equal to 16 mm and 24 mm respectively; the relative RMSE of simulated annual total runoff is 16%; the RMSE of daily snow surface temperature is 2·9 °C (the temperature varies from 0 to ,46 °C); the RMSE of maximum snow water equivalent (whose value averaged over 18 years is equal to 147 mm) is 32 mm. Analysis of the results of validation shows that the new version of the model SWAP reproduces the heat and water exchange processes occurring in mid-latitude boreal grassland reasonably well. Copyright © 2002 John Wiley & Sons, Ltd. [source] Estimating areal snowmelt infiltration into frozen soilsHYDROLOGICAL PROCESSES, Issue 16 2001D. M. Gray Abstract An algorithm for estimating areal snowmelt infiltration into frozen soils is developed. Frozen soils are grouped into classes according to surface entry condition as: (a) Restricted,water entry is impeded by surface conditions, (b) Limited,capillary flow predominates and water entry is influenced primarily by soil physical properties, and (c) Unlimited,gravity flow predominates and most of the meltwater infiltrates. For Limited soils cumulative infiltration over time is estimated by a parametric equation from surface saturation, initial soil moisture content (water + ice), initial soil temperature and infiltration opportunity time. Total infiltration into Unlimited and Limited soils is constrained by the available water storage capacity. This constraint is also used to determine when Limited soils have thawed. The minimum spatial scale of the infiltration model is established for Limited soils by the variabilities in surface saturation, snow water equivalent, soil infiltrability, soil moisture (water + ice) and depth of soil freezing. Since snowmelt infiltration is influenced by other processes and factors that affect snow ablation, it is assumed that the infiltrability spatial scale should be consistent with the scales used to describe these variables. For open, northern, cold regions the following order in spatial scales is hypothesized: frozen ground , snowmelt , snow water equivalent , frozen soil infiltrability , soil moisture (water + ice) and snow water. For mesoscale application of the infiltration model it is recommended that the infiltrability scale be taken equal to the scale used to describe the areal extent and distribution of the water equivalent of the snowcover that covers frozen ground. Scaling the infiltrability of frozen soils in this manner allows one to exploit established landscape-stratification methodology used to derive snow accumulation means and distribution. Scaling of soil infiltrability at small scales (microscale) is complicated and requires information on the association(s) between the spatial distributions of soil moisture (water + ice) and snow water. A flow chart of the algorithm is presented. Copyright © 2001 John Wiley & Sons, Ltd. [source] Seasonal variation in the energy and water exchanges above and below a larch forest in eastern SiberiaHYDROLOGICAL PROCESSES, Issue 8 2001Takeshi Ohta Abstract The water and energy exchanges in forests form one of the most important hydro-meteorological systems. There have been far fewer investigations of the water and heat exchange in high latitude forests than of those in warm, humid regions. There have been few observations of this system in Siberia for an entire growing season, including the snowmelt and leaf-fall seasons. In this study, the characteristics of the energy and water budgets in an eastern Siberian larch forest were investigated from the snowmelt season to the leaf-fall season. The latent heat flux was strongly affected by the transpiration activity of the larch trees and increased quickly as the larch stand began to foliate. The sensible heat dropped at that time, although the net all-wave radiation increased. Consequently, the seasonal variation in the Bowen ratio was clearly ,U'-shaped, and the minimum value (1·0) occurred in June and July. The Bowen ratio was very high (10,25) in early spring, just before leaf opening. The canopy resistance for a big leaf model far exceeded the aerodynamic resistance and fluctuated over a much wider range. The canopy resistance was strongly restricted by the saturation deficit, and its minimum value was 100 s m,1 (10 mm s,1 in conductance). This minimum canopy resistance is higher than values obtained for forests in warm, humid regions, but is similar to those measured in other boreal conifer forests. It has been suggested that the senescence of leaves also affects the canopy resistance, which was higher in the leaf-fall season than in the foliated season. The mean evapotranspiration rate from 21 April 1998 to 7 September 1998 was 1·16 mm day,1, and the maximum rate, 2·9 mm day,1, occurred at the beginning of July. For the growing season from 1 June to 31 August, this rate was 1·5 mm day,1. The total evapotranspiration from the forest (151 mm) exceeded the amount of precipitation (106 mm) and was equal to 73% of the total water input (211 mm), including the snow water equivalent. The understory evapotranspiration reached 35% of the total evapotranspiration, and the interception evaporation was 15% of the gross precipitation. The understory evapotranspiration was high and the interception evaporation was low because the canopy was sparse and the leaf area index was low. Copyright © 2001 John Wiley & Sons, Ltd. [source] Mapping snow characteristics based on snow observation probabilityINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2007Bahram Saghafian Abstract Measurement/estimation of snow water equivalent (SWE) is a difficult task in water resources studies of snowy regions. SWE point data is measured at snow courses that are normally operated with low density owing to high costs and great difficulty in reaching the stations in cold seasons. Moreover, snow is known to exhibit high spatial variability, which makes SWE studies based solely on sparse station data more uncertain. Ever-increasing availability of satellite images is a promising tool to overcome some of the difficulties associated with analyzing spatial variability of snow. Although National Oceanic and Atmospheric Administration (NOAA) satellite images have low spatial resolution with approximately 1.1-km pixel size, they are adequate for mapping snow cover at regional scales and enjoy a moderate length of record period. In this paper, rain and snow records of synoptic stations and the time series of NOAA-based snow cover maps were used to map average SWE of a vast area in southwestern Iran. First, monthly and annual snow coefficient (SC) at synoptic stations were determined on the basis of analysis of hourly observation of type and amount of precipitation. Then, two new spatially distributed snow characteristics were introduced, namely, average frequency of snow observation (FSO) and monthly frequency of maximum snow observation (FMSO), on the basis of existing satellite snow observations. FSO and monthly FMSO maps were prepared by a geographic information system on the basis of snow map time series. Correlation of these two parameters with SC was studied and spatial distribution of SC was estimated on the basis of the best correlation. Moreover, the distribution of mean annual precipitation was derived by comparing a number of interpolation methods. SWE map was generated by multiplying SC and precipitation maps and its spatial variability in the region was analyzed. Copyright © 2007 Royal Meteorological Society [source] Canadian RCM projected climate-change signal and its sensitivity to model errorsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2006L. Sushama Abstract Climate change is commonly evaluated as the difference between simulated climates under future and current forcings, based on the assumption that systematic errors in the current-climate simulation do not affect the climate-change signal. In this paper, we investigate the Canadian Regional Climate Model (CRCM) projected climate changes in the climatological means and extremes of selected basin-scale surface fields and its sensitivity to model errors for Fraser, Mackenzie, Yukon, Nelson, Churchill and Mississippi basins, covering the major climate regions in North America, using current (1961,1990) and future climate simulations (2041,2070; A2 and IS92a scenarios) performed with two versions of CRCM. Assessment of errors in both model versions suggests the presence of nonnegligible biases in the surface fields, due primarily to the internal dynamics and physics of the regional model and to the errors in the driving data at the boundaries. In general, results demonstrate that, in spite of the errors in the two model versions, the simulated climate-change signals associated with the long-term monthly climatology of various surface water balance components (such as precipitation, evaporation, snow water equivalent (SWE), runoff and soil moisture) are consistent in sign, but differ in magnitude. The same is found for projected changes to the low-flow characteristics (frequency, timing and return levels) studied here. High-flow characteristics, particularly the seasonal distribution and return levels, appear to be more sensitive to the model version. CRCM climate-change projections indicate an increase in the average annual precipitation for all basins except Mississippi, while annual runoff increases in Fraser, Mackenzie and Yukon basins. A decrease in runoff is projected for Mississippi. A significant decrease in snow cover is projected for all basins, with maximum decrease in Fraser. Significant changes are also noted in the frequency, timing and return levels for low flows. Copyright © 2006 Royal Meteorological Society. [source] A synoptic-scale climate analysis of anomalous snow water equivalent over the Northern Great Plains of the USAINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 8 2003Andrew Grundstein Abstract The Northern Great Plains is a region where variations in seasonal snow accumulation can have a dramatic affect on regional hydrology. In the past, one of the problems in studying snow hydrology has been obtaining information of sufficiently high temporal and spatial resolution on the water content of the snowpack. This project used a hybrid climatology of snow water equivalent (SWE) that incorporated both model and observed data. This climatology has a long time series (49 years) and a high spatial resolution (1° × 1°) sufficient for use in a climatic analysis. The long and complete time series of SWE generated in this project allowed for a comprehensive analysis of the meteorological and climate forcing mechanisms that influence the amount of SWE. The five largest (high SWE) and five smallest SWE (low SWE) accumulations on 1 March were examined. High SWE years received greater snowfall and fewer accumulated melting degree days throughout the season. Large SWE accumulations at the end of the season, however, were not always associated with deep snowpacks early in the season. Also, all five high SWE years had above normal snowfall in February. Years with small or no SWE had below-average snowfall but greater than average accumulated melting degree days. A synoptic analysis examined both atmospheric circulation and air mass frequencies to assess impacts on ablation and snowfall. A distinct difference in the frequency of different air mass during high SWE versus low SWE years was evident. High SWE years were characterized by substantially greater intrusions of the coldest and driest air mass type (dry polar). Low SWE years, in contrast, had a greater frequency of more moderate air masses (dry moderate and moist moderate). In years with above average SWE, negative departures in November,December,January,February composite 700 hPa field were evident across the continental USA and indicate a greater frequency of troughing across the study area. Low SWE years were characterized by a ridging pattern that reduced the likelihood of precipitation and may have aided in the intrusion of more moderate air masses. Copyright © 2003 Royal Meteorological Society [source] Effect of Snow Cover Conditions on the Hydrologic Regime: Case Study in a Pluvial-Nival Watershed, Japan,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2008Andrew C. Whitaker Abstract:, Hydrologic monitoring in a small forested and mountainous headwater basin in Niigata Prefecture has been undertaken since 2000. An important characteristic of the basin is that the hydrologic regime contains pluvial elements year-round, including rain-on-snow, in addition to spring snowmelt. We evaluated the effect of different snow cover conditions on the hydrologic regime by analyzing observed data in conjunction with model simulations of the snowpack. A degree-day snow model is presented and applied to the study basin to enable estimation of the basin average snow water equivalent using air temperature at three representative elevations. Analysis of hydrological time series data and master recession curves showed that flow during the snowmelt season was generated by a combination of ground water flow having a recession constant of 0.018/day and diurnal melt water flow having a recession constant of 0.015/hour. Daily flows during the winter/snowmelt season showed greater persistence than daily flows during the warm season. The seasonal water balance indicated that the ratio of runoff to precipitation during the cold season (December to May) was about 90% every year. Seasonal snowpack plays an important role in defining the hydrologic regime, with winter precipitation and snowmelt runoff contributing about 65% of the annual runoff. The timing of the snowmelt season, indicated by the date of occurrence of the first significant snowmelt event, was correlated with the occurrence of low flow events. Model simulations showed that basin average snow water equivalent reached a peak around mid-February to mid-March, although further validation of the model is required at high elevation sites. [source] POTENTIAL IMPACTS OF CLIMATE CHANGE ON CALIFORNIA HYDROLOGY,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2003Norman L. Miller ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow-producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century. [source] |