Home About us Contact | |||
Small-angle X-ray Scattering Measurements (small-angle + x-ray_scattering_measurement)
Selected AbstractsSmall-angle X-ray scattering investigation of water droplets in mistJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007Yohko F. Yano Small-angle X-ray scattering measurements of water droplets in a mist were carried out using the BL15XU beamline at SPring-8. The diameter of the water droplets generated by ultrasonic atomization was found to be , 50,nm and had no distribution in the range under 50,nm, as predicted. The study also showed how difficult it is to measure the small-angle scattering of low-density materials, such as liquid droplets in a mist. [source] Small-angle X-ray scattering measurements of helium-bubble formation in borosilicate glassJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 5 2006Alexander Y. Terekhov Small-angle X-ray scattering (SAXS) measurements have been performed to study helium-bubble formation in borosilicate glass. Helium was introduced by He+ implantation over an energy range of 1 to 2,MeV to give a uniform distribution over ,1,µm depth. The implanted dose was varied from 9 × 1013 to 2.8 × 1016,ions,cm,2, corresponding to a local concentration range of 40 to 11200 atomic parts per million (a.p.p.m.) averaged over the implantation depth. The SAXS response was fit with the Percus,Yevick hard-sphere interaction potential to account for interparticle interference. The fits yield helium-bubble radii and helium-bubble volume fractions that vary from 5 to 15,Å and from 10,3 to 10,1, respectively, as the dose increased from 9 × 1013 to 2.8 × 1016,cm,2. The SAXS data are also consistent with maximum helium solubility with respect to bubble formation between 40 and 200 a.p.p.m. in the borosilicate glass matrix. [source] Synthesis and hydrogel formation of fluorine-containing amphiphilic ABA triblock copolymersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2001Kozo Matsumoto Abstract Fluorine-containing amphiphilic ABA triblock copolymers, poly(2-hydroxyethyl vinyl ether)- block -poly[2-(2,2,3,3,3-pentafluoropropoxy)ethyl vinyl ether]- block -poly(2-hydroxyethyl vinyl ether) [poly(HOVE- b -PFPOVE- b -HOVE)] (HFH), poly[2-(2,2,3,3,3-pentafluoropropoxy)ethyl vinyl ether]- block -poly(2-hydroxyethyl vinyl ether)- block -poly[2-(2,2,3,3,3-pentafluoropropoxy)ethyl vinyl ether] [poly(PFPOVE- b -HOVE- b -PFPOVE)] (FHF), and poly(n -butyl vinyl ether)- block -poly(2-hydroxyethyl vinyl ether)- block -poly(n -butyl vinyl ether) [poly(NBVE- b -HOVE- b -NBVE)] (LHL), were synthesized, and their behavior in water was investigated. The aforementioned polymers were prepared by sequential living cationic polymerization of 2-acetoxyethyl vinyl ether (AcOVE) and PFPOVE or NBVE, followed by hydrolysis of acetyl groups in polyAcOVE. FHF and LHL formed a hydrogel in water, whereas HFH gave a homogeneous aqueous solution. In addition, the gel-forming concentration of FHF was much lower than that of corresponding LHL. Surface-tension measurements of the aqueous polymer solutions revealed that all the triblock copolymers synthesized formed micelles or aggregates above about 1.0 × 10,4 mol/L. The surface tensions of HFH and FHF solutions above the critical micelle concentration were lower than those of LHL, indicating high surface activity of fluorine-containing triblock copolymers. Small-angle X-ray scattering measurements revealed that HFH formed a core-shell sperical micelle in 1 wt % aqueous solutions, whereas the other block copolymers caused more conplicated assembly in the solutions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3751,3760, 2001 [source] Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scaleJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2010H. Fischer This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than ,10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights. [source] Insights into the structure of plant ,-type phospholipase DFEBS JOURNAL, Issue 10 2007Susanne Stumpe Phospholipases D play an important role in the regulation of cellular processes in plants and mammals. Moreover, they are an essential tool in the synthesis of phospholipids and phospholipid analogs. Knowledge of phospholipase D structures, however, is widely restricted to sequence data. The only known tertiary structure of a microbial phospholipase D cannot be generalized to eukaryotic phospholipases D. In this study, the isoenzyme form of phospholipase D from white cabbage (PLD,2), which is the most widely used plant phospholipase D in biocatalytic applications, has been characterized by small-angle X-ray scattering, UV-absorption, CD and fluorescence spectroscopy to yield the first insights into its secondary and tertiary structure. The structural model derived from small-angle X-ray scattering measurements reveals a barrel-shaped monomer with loosely structured tops. The far-UV CD-spectroscopic data indicate the presence of ,-helical as well as ,-structural elements, with the latter being dominant. The fluorescence and near-UV CD spectra point to tight packing of the aromatic residues in the core of the protein. From the near-UV CD signals and activity data as a function of the calcium ion concentration, two binding events characterized by dissociation constants in the ranges of 0.1 mm and 10,20 mm can be confirmed. The stability of PLD,2 proved to be substantially reduced in the presence of calcium ions, with salt-induced aggregation being the main reason for irreversible inactivation. [source] Two-dimensional small-angle X-ray scattering of self-assembled nanocomposite films with oriented arrays of spheres: determination of lattice type, preferred orientation, deformation and imperfectionJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2007Bernd M. Smarsly Mesostructured oxide films were prepared by dip-coating from colloidal solutions on ultrathin Si wafers and solidified by heating at various temperatures. Two-dimensional small-angle X-ray scattering measurements were carried out in transmission under selected tilt angles and evaluated by comparison with analytical expressions. The films are composed of oriented mesophases, the structures of which are defined in terms of lattice type, preferred orientation, deformation and imperfection, notably stacking faults. [source] Precursory microstructures in Zr,Cu,Al,Ni bulk metallic glasses examined by anomalous small-angle scattering at the Zr K edgeJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007Isao Murase Anomalous small-angle X-ray scattering measurements of Zr,Cu,Al,Ni quaternary alloys have been made at the Zr K absorption edge. In melt-quenched samples, small cluster components without crystallization were found. The contrast change at the edge suggested that compositional fluctuation of Al is incorporated. [source] SAXSANA: an interactive program for the analysis and monitoring of static and time-resolved small-angle X-ray solution scattering measurementsJOURNAL OF SYNCHROTRON RADIATION, Issue 2 2003Yuzuru Hiragi An interactive analytical program, SAXSANA, for small-angle X-ray scattering measurements of solutions is described. The program processes scattered data without disciplined knowledge of small-angle scattering. SAXSANA also assists in finding the best experimental conditions, thus avoiding blind runs of experiments. SAXSANA consists of the following procedures: (i) determination of the centre of scattered X-rays and moment transfer Q (Q,=,4,sin,/,, where 2, is the scattering angle and , is the wavelength) for each measured channel; (ii) conversion of the data format to the format of Q versus scattered intensities J(Q); (iii) truncation of unnecessary data and smoothing of scattering curves by cubic-spline function; (iv) correction of the absorption effect and subtraction of the scattered intensity of the buffer (solvent) solution from that of the sample solution; (v) creation of a data file for a three-dimensional representation of time-resolved scattering curves; (vi) determination of radii of gyration by Guinier plots; (vii) determination of persistent lengths by Kratky plots; (viii) extrapolation of the small-angle part by Guinier plots; (ix) extrapolation of the wide-angle part by Porod's & Luzzati's laws for the Hankel transformation in order to obtain the distance distribution function p(r); (x) calculation of p(r) and computation of the invariant, the chord length, the volume, the spherical radius, the maximum dimension Dmax and the radius of gyration (Rg). SAXSANA also serves as an on-site monitor for the validity of an experimental result during the measurements. [source] |