Home About us Contact | |||
Small Pores (small + pore)
Selected AbstractsA chromospheric dark-cored fibril in Ca II IR spectraASTRONOMISCHE NACHRICHTEN, Issue 6 2010C. Beck Abstract We investigate the thermodynamical and magnetic properties of a "dark-cored" fibril seen in the chromospheric Ca II IR line at 854.2 nm to determine the physical process behind its appearance. We analyse a time series of spectropolarimetric observations obtained in the Ca II IR line at 854.2 nm and the photospheric Fe I line at 630.25 nm. We simultaneously invert the spectra in both wavelength ranges with the SIR code to obtain the temperature and velocity stratification with height in the solar atmosphere and the magnetic field properties in the photosphere. The structure can be clearly traced in the line-of-sight (LOS) velocity and the temperature maps. It connects from a small pore with kG fields to a region with lower field strength. The flow velocity and the temperature indicate that the height of the structure increases with increasing distance from the inner footpoint. The Stokes V signal of 854.2 nm shows a Doppler-shifted polarization signal with the same displacement as in the intensity profile, indicating that the supersonic flow seen in the LOS velocity is located within magnetized plasma. We conclude that the chromospheric dark-cored fibril traces a siphon flow along magnetic field lines, driven by the gas pressure difference caused by the higher magnetic field strength at the inner footpoint. We suggest that fast flows guided by the magnetic field lead to the appearance of "dark-cored" fibrils in intensity images. Although the observations included the determination of the polarization signal in the chromospheric Ca II IR line, the signal could not be analysed quantitatively due to the low S/N. Chromospheric polarimetry will thus require telescopes of larger aperture able to collect a sufficient number of photons for a reliable determination of polarization in deep and only weakly polarized spectral lines (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Integrated Microanalytical System Coupling Permeation Liquid Membrane and Voltammetry for Trace Metal Speciation.ELECTROANALYSIS, Issue 10 2004Optimization, Technical Description Abstract A new minicell coupling the liquid-liquid extraction technique called permeation liquid membrane (PLM) with an integrated Ir-based Hg-plated microelectrode array for voltammetric detection has been developed for the speciation of heavy metals in natural waters. Lead and cadmium have been used as model compounds. The PLM consists of a carrier (0.1,M 22DD+0.1,M lauric acid) dissolved in 1,:,1 mixture of toluene/phenylhexane held in the small pores (30,nm) of a hydrophobic polypropylene membrane (Celgard 2500). One side of this membrane is in contact with a flowing source solution, containing the metal ions of interest. An acceptor or strip solution (pyrophosphate) is placed on the other side of the PLM with the microelectrode array placed at 480,,m of the PLM. The analyte is transported by the carrier from the source solution to the strip solution. The originality of the new minicell is that accumulation in the strip solution is voltammetrically followed by the integrated microelectrode array in real time, and at low concentration level, using square-wave anodic stripping voltammetry (SWASV). In order to protect the Hg microelectrodes from the adsorption of the hydrophobic carrier, the microelectrodes are embedded in a thin gel layer (280,,m) of 1.5% LGL agarose gel containing 10% of hydrophobic silica particles C18. The choice of optimum conditions is discussed in details in this article. Due to the very small effective strip volume of the new cell (less than 1,,L), high enrichment factor can be obtained (e.g., 330 for Pb) after 2,hours of accumulation. No deaeration of the solutions is required for SWASV measurements. Detection limits under these conditions are 2,pM and 75,pM for Pb and Cd, respectively, using a voltammetric deposition time of 5,min. In addition, no fouling effects were observed with natural water samples. [source] Availability of polycyclic aromatic hydrocarbons from lampblack-impacted soils at former oil-gas plant sites in California, USAENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2007Lei Hong Abstract Lampblack-impacted soils at former oil-gas plant sites in California, USA, were characterized to assess the sorption of polycyclic aromatic hydrocarbons (PAHs) and the concentration-dependent effects of a residual oil tar phase on sorption mechanism and availability of PAHs. Nuclear magnetic resonance spectroscopy demonstrated similar aromaticity for both lampblack carbon and the oil tar phase, with pronounced resonance signals in the range of 100 to 150 ppm. Scanning-electron microscopic images revealed a physically distinct oil tar phase, especially at high concentrations in lampblack, which resulted in an organic-like film structure when lampblack particles became saturated with the oil tar. Sorption experiments were conducted on a series of laboratory-prepared lampblack samples to systematically evaluate influences of an oil tar phase on PAH sorption to lampblack. Results indicate that the sorption of PAHs to lampblack exhibits a competition among sorption phases at low oil tar contents when micro- and mesopores are accessible. When the oil tar content increases to more than 5 to 10% by weight, this tar phase fills small pores, reduces surface area, and dominates PAH sorption on lampblack surface. A new PAH partitioning model, Kd = KLB-C(1- ftar)° + ftarKtar (, = empirical exponent), incorporates these effects in which the control of PAH partitioning transits from being dominated by sorption in lampblack (KLB-C) to absorption in oil tar (Ktar), depending on the fraction of tar (ftar). This study illustrates the importance of understanding interactions among PAHs, oil tar, and lampblack for explaining the differences in availability of PAHs among site soils and, consequently, for refining site-specific risk assessment and establishing soil cleanup levels. [source] A basic study on humidity recovery by using micro-porous media (Effects of thermal condition of fluids and geometrical condition of apparatus on transport performance)HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 8 2006Shixue Wang Abstract Using an experimental apparatus to examine the performance of heat and mass transfer between constant-temperature water and dry air through a porous plate having extremely small pores, the effects of the thermal conditions in the fluids and the geometric condition of the apparatus on moisture transport were measured. The effects of water temperature, thickness of the porous plate, and channel height of the flowing air on moisture transport are noticeable. However, the effect of air temperature in the channel inlet on moisture transport is slight. In addition, in order to evaluate the degree of air humidity absorption, a parameter called the moisture absorption rate was introduced. The moisture absorption rate was shown to decrease with increasing air velocity and varies only slightly for a plate thickness of 1 mm and decreases for a plate thickness of 3.5 mm with increasing water temperature. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(8): 568,581, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20133 [source] The Effects of Temperature on the Local Structure of Metakaolin-Based Geopolymer Binder: A Neutron Pair Distribution Function InvestigationJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2010Claire E. White Neutron pair distribution function (PDF) analysis is utilized to advance the understanding of the local atomic structural characteristics of geopolymer binders derived from metakaolin, specifically the nature and amount of the water associated with these materials. Samples were heated in air to temperatures up to 1200°C, then analyzed ex situ by high momentum transfer neutron total scattering and PDF analysis. Water contained in large pores, along with water associated with hydration of potassium cations in the geopolymer framework structure, comprise the majority of water in this material. The remaining water is situated in small pores and as terminal hydroxyl groups attached to the Si,Al framework. The Si,Al framework structure undergoes only subtle rearrangement upon heating, but maintains a tetrahedral aluminosilicate framework environment. After crystallization with heating beyond 1000°C, the geopolymer gel is predominantly converted to leucite, with small amounts of amorphous mullite and glassy silica, which have never before been observed in heated geopolymers. This demonstrates the value of neutron PDF analysis to probe the local structure of these important geopolymeric materials. [source] Growth and Phase Transformation of Nanometer-Sized Titanium Oxide Powders Produced by the Precipitation MethodJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2004Gwan Hyoung Lee We report an in situ TEM investigation of the growth and transformation in nanometer-sized titania powders. The powders were produced through precipitation of titanium tetrachloride under different pH conditions. The initial phase of the produced powders was amorphous or was a mixture of anatase and brookite according to the pH conditions. During calcination, the anatase particles grew and transformed into rutile. The transformation temperature increased with increasing pH value. In situ TEM observations showed that the anatase particles were absorbed into rutile, and then rutile particles grew by coalescence. Furthermore, small pores were observed to form in samples prepared with high pH from the effects of hydroxyl ions and zeta potential. Pore formation increased the surface area, which delayed the transformation and nucleation of rutile. This explains the difference of growth and transformation of titania powders produced under different pH conditions during calcination. [source] Influence of Solvents on the Formation of Honeycomb Films by Water Droplets TemplatingMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 5 2006Ye Tian Abstract Summary: Several solvents were utilized to investigate their influence on the formation of honeycomb patterns. The polymers PPO, PLGA and PLLGA were dissolved in different solvents or mixed solvents to form porous membranes. It was found that a good compatibility between the polymers and their solvents, and an appropriate volatility of the solvent were beneficial for the formation of regular structures. Moreover, C2HCl3 and CH2Cl2, neither of whose PPO solutions could form regular structures at 30,°C, were mixed at different volume ratios to dissolve PPO and fabricate porous structures. The result showed that a regular pattern was achieved when the volume ratio of C2HCl3:CH2Cl2 was 90:10 and that a special structure with big pores surrounded by small pores was obtained when the volume ratio of C2HCl3:CH2Cl2 was 10:90. Based on these phenomena, possible reasons were also proposed. [source] Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteinsBIOTECHNOLOGY JOURNAL, Issue 11 2009Jennifer A. Maynard Dr. Abstract Technologies based on surface plasmon resonance (SPR) have allowed rapid, label-free characterization of protein-protein and protein-small molecule interactions. SPR has become the gold standard in industrial and academic settings, in which the interaction between a pair of soluble binding partners is characterized in detail or a library of molecules is screened for binding against a single soluble protein. In spite of these successes, SPR is only beginning to be adapted to the needs of membrane-bound proteins which are difficult to study in situ but represent promising targets for drug and biomarker development. Existing technologies, such as BIAcoreTM, have been adapted for membrane protein analysis by building supported lipid layers or capturing lipid vesicles on existing chips. Newer technologies, still in development, will allow membrane proteins to be presented in native or near-native formats. These include SPR nanopore arrays, in which lipid bilayers containing membrane proteins stably span small pores that are addressable from both sides of the bilayer. Here, we discuss current SPR instrumentation and the potential for SPR nanopore arrays to enable quantitative, high-throughput screening of G protein coupled receptor ligands and applications in basic cellular biology. [source] |