Home About us Contact | |||
Small Droplets (small + droplet)
Selected AbstractsEffect of buffer cations and of H3O+ on the charge states of native proteins.JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2003Significance to determinations of stability constants of protein complexes Abstract The progressive reduction of charge in charge states of non-denatured proteins (lysozyme, ubiquitin, and cytochrome c), observed with nanospray in the positive ion mode, when the buffer salt ammonium acetate is replaced by ethylammonium acetates (EtNH3Ac, Et2NH2Ac and Et3NHAc) is rationalized on the basis of the charge residue model (CRM). The charge states of the multiply protonated protein are shown to be controlled by the increasing gas-phase basicities, GB(B), of the bases(B) NH3, EtNH2, Et2NH and Et3N. Charge states derived from evaluated apparent gas-phase basicities GBapp of the basic side-chains of the protein and the known GB(B) of the above bases are found to be in agreement with the experimentally observed charge states. This is a requirement of the CRM, because in this model the small positive ions (the buffer cations in the present case) at the surface of the electrospray droplets are the excess ions that provide the charge of the final small droplet that contains the protein molecule and on evaporation of the solvent transfer the charge to the protein. The observed charge states in the absence of buffer salts, i.e. pure water, are attributed to excess H3O+ ions produced by the electrolysis process that attends electrospray. A proposed extended mechanism provides predictions of factors that determine the sensitivity for detection of the multiply protonated proteins. Consideration of restraints imposed by the CRM lead to some simple predictions for conditions that should be present to obtain accurate determinations by electrospray and nanospray of stability constants for the protein,complex equilibrium in aqueous solution. Copyright © 2003 John Wiley & Sons, Ltd. [source] Scanning electron microscopic observation of oil/wax/water/surfactant systemINTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 2 2005K. Ikuta We observed the internal structure of an oil/wax/water/surfactant system using a scanning electron microscope to investigate the relationship between its hardness and state of wax crystal. The molten wax (hydrogenated jojoba oil, ceresin, polyethylene wax, carnauba wax, or microcrystalline wax) was cast in a home-made spiral mold of aluminum foil for preparing the test specimen for SEM observation. In hydrogenated jojoba oil a fine frame-like crystal structure, the so-called ,card-house structure,' was observed but not in other waxes. The mixture of hydrogenated jojoba oil and water showed a few small droplets deposited on the roundish wax frame-like structure. On the other hand, waxes other than hydrogenated jojoba oil did not change their internal structure when they were mixed with water. This result suggested that hydrogenated jojoba oil showed uniquely high affinity for water. In the system of oil, water, surfactant, and various kinds of waxes, their crystal structure, hardness, and the shape of dispersed water particles were remarkably changed with the combination of waxes. In the system with ceresin and carnauba wax, the hardness measured by a card-tension meter was high, and the internal crystal structure was fine and amorphous. The water particle in the ceresin and carnauba wax system had a smaller diameter than that in the system containing hydrogenated jojoba oil. The system containing hydrogenated jojoba oil showed a card house-like wax crystal structure without high hardness. It was considered that the wax crystal structure played an important role in providing hardness and in contributing to the water distribution in the oil/wax/water/surfactant system. [source] Effect of oil content and processing conditions on the thermal behaviour and physicochemical stability of oil-in-water emulsionsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 1 2009Megan Tippetts Summary The destabilisation mechanism of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenisation conditions and crystallisation temperatures (10, 5, 0, ,5 and ,10 °C). A mixture of anhydrous milk fat and soya bean oil was used as the lipid phase and whey protein isolate (2 wt%) as emulsifier. Crystallisation and melting behaviours were analysed using differential scanning calorimetry. Physicochemical stability was measured with a vertical scan macroscopic analyser. Emulsions with 20% oil were found to be less stable than those with 40% oil. For 20% o/w emulsions, the crystallisation was delayed and inhibited in emulsions with smaller droplets and promoted in emulsions with larger droplets when compared with 40% o/w emulsions. Depending on the droplet sizes in the emulsion, the formation of lipid crystals (in combination with the emulsifier) either stabilises (small droplets) or destabilises (big droplets) the emulsion. [source] Characterization of Phase Separation Behavior, Emulsion Stability, Rheology, and Microstructure of Egg White,Polysaccharide MixturesJOURNAL OF FOOD SCIENCE, Issue 6 2009E. Alben Erçelebi ABSTRACT:, Phase separation behavior of egg white-pectin/guar gum mixtures was investigated. These systems led to phase separation arisen by either depletion flocculation or thermodynamic incompatibility. The influence of polysaccharides on the emulsifying activity index (EAI), emulsifying stability index (ESI), creaming stability, microstructure, and rheological properties was also studied at different polysaccharide concentrations (0% to 0.5%, [w/v]). Increasing pectin and guar gum concentration from 0.01% to 0.5% significantly improved EAI by 51% and 25%, respectively. The highest ESI and EAI values were obtained in the presence of 0.5% (w/v) pectin/guar gum. Microscopic images showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides. The addition of polysaccharides improved emulsion stability against creaming. Egg white-stabilized emulsions with and without polysaccharides reflect the pseudoplastic behavior with,n,< 1.0. Polysaccharides, especially at high concentrations, affected the viscoelastic behavior of the emulsions; storage (G,) and loss modulus (G,) crossed-over at lower frequency values as compared to that of emulsions containing no polysaccharide. [source] Formulations generated from ethanol-based proliposomes for delivery via medical nebulizersJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2006Abdelbary M. A. Elhissi Multilamellar and oligolamellar liposomes were produced from ethanol-based soya phosphatidylcholine proliposome formulations by addition of isotonic sodium chloride or sucrose solutions. The resultant liposomes entrapped up to 62% of available salbutamol sulfate compared with only 1.23% entrapped by conventionally prepared liposomes. Formulations were aerosolized using an air-jet nebulizer (Pari LC Plus) or a vibrating-mesh nebulizer (Aeroneb Pro small mesh, Aeroneb Pro large mesh, or Omron NE U22). All vibrating-mesh nebulizers produced aerosol droplets having larger volume median diameter (VMD) and narrower size distribution than the air-jet nebulizer. The choice of liposome dispersion medium had little effect on the performance of the Pari nebulizer. However, for the Aeroneb Pro small mesh and Omron NE U22, the use of sucrose solution tended to increase droplet VMD, and reduce aerosol mass and phospholipid outputs from the nebulizers. For the Aeroneb Pro large mesh, sucrose solution increased the VMD of nebulized droplets, increased phospholipid output and produced no effect on aerosol mass output. The Omron NE U22 nebulizer produced the highest mass output (approx. 100%) regardless of formulation, and the delivery rates were much higher for the NaCl-dispersed liposomes compared with sucrose-dispersed formulation. Nebulization produced considerable loss of entrapped drug from liposomes and this was accompanied by vesicle size reduction. Drug loss tended to be less for the vibrating-mesh nebulizers than the jet nebulizer. The large aperture size mesh (8,m) Aeroneb Pro nebulizer increased the proportion of entrapped drug delivered to the lower stage of a twin impinger. This study has demonstrated that liposomes generated from proliposome formulations can be aerosolized in small droplets using air-jet or vibrating-mesh nebulizers. In contrast to the jet nebulizer, the performance of the vibrating-mesh nebulizers was greatly dependent on formulation. The high phospholipid output produced by the nebulizers employed suggests that both air-jet and vibrating-mesh nebulization may provide the potential of delivering liposome-entrapped or solubilized hydrophobic drugs to the airways. [source] Electrospray: From ions in solution to ions in the gas phase, what we know nowMASS SPECTROMETRY REVIEWS, Issue 6 2009Paul Kebarle Abstract There is an advantage for users of electrospray and nanospray mass spectrometry to have an understanding of the processes involved in the conversion of the ions present in the solution to ions in the gas phase. The following processes are considered: Creation of charge droplets at the capillary tip; Electrical potentials required and possibility of gas discharges; Evolution of charged droplets, due to solvent evaporation and Coulomb explosions, to very small droplets that are the precursors of the gas phase ions; Production of gas phase ions from these droplets via the Ion Evaporation and Charge residue models; Analytical uses of ESIMS of small ions, qualitative and quantitative analysis; Effects of the ESI mechanism on the analysis of proteins and protein complexes; Determination of stability constants of protein complexes; Role of additives such as ammonium acetate on the observed mass spectra. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:898,917, 2009 [source] Nanoelectrospray emitters: Trends and perspectiveMASS SPECTROMETRY REVIEWS, Issue 6 2009Graham T.T. Gibson Abstract The benefits of electrospray ionization are many, including sensitivity, robustness, simplicity and the ability to couple continuous flow methods with mass spectrometry. The technique has seen further improvement by lowering flow rates to the nanoelectrospray regime (<1,000,nL/min), where sample consumption is minimized and sensitivity increases. The move to nanoelectrospray has required a shift in the design of the electrospray source which has mostly involved the emitter itself. The emitter has seen an evolution in architecture as the shape and geometry of the device have proved pivotal in the formation of sufficiently small droplets for sensitive MS detection at these flow rates. There is a clear movement toward the development of emitters that produce multiple Taylor cones. Such multielectrospray emitters have been shown to provide enhanced sensitivity and sample utilization. This article reviews the development of nanoelectrospray emitters, including factors such as geometry and the manner of applying voltage. Designs for emitters that take advantage of multielectrospray are emphasized. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:918,936, 2009 [source] Drop Deformation and Breakup Mechanisms in Viscoelastic Model Fluid Systems and Polymer BlendsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2002Frej Mighri Abstract This paper reviews the dispersion mechanisms in viscoelastic systems under relatively high shear rate conditions. In particular, two non-Newtonian deformation and breakup mechanisms were revealed by flow visualization in a transparent Couette shearing setup. The first one is the dispersed droplet elongation perpendicular to the flow direction. This was observed only for viscoelastic drops and had been associated to normal force buildup in the droplet. The second deformation/breakup mechanism was observed in very high viscosity ratio polymer systems. It consists in erosion at the drop surface. Clouds of very small ribbons and sheets were developed around the drop then stretched and finally broken into very small droplets, rapidly distributed in the matrix. Cet article examine les mécanismes de dispersion dans les mélanges viscoélastiques à des taux de cisaillement relativement élevés. Deux nouveaux mécanismes de déformation et de rupture de gouttes viscoélastiques ont été révélés en utilisant un montage de visualisation transparent de type Couette. Le premier mécanisme est l'orientation de l'axe principal de la goutte perpendiculairement à la direction de l'écoulement, phénomène qui n'a été observé que pour des gouttes viscoélastiques. Ce phénomène a été relié au développement de forces normales (élasticité) à l'intérieur de la goutte. Le second mécanisme de déformation/rupture a été observé avec des systèmes de polymères fondus possédant des rapports de viscosité élevés. Il consistait en une érosion de la surface de la goutte générant ainsi un nuage de gouttelettes et de minces feuillets autour de la goutte principale. Ces derniers s'étiraient suite à l'écoulement de la matrice et finissaient par être brisés en gouttelettes très fines rapidement dispersées dans la matrice. [source] Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus cloudsTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 570 2000Robert Wood Abstract A method is presented to parametrize the effects of drizzle upon the droplet effective radius in stratocumulus clouds. The cloud-droplet size distribution in stratocumulus is represented by the sum of a modified Gamma distribution to represent the small (radius <20 ,m) droplets and an exponential Marsh all-Palmer-type distribution to represent the large (drizzle) droplets. Using this approach a relationship is derived to account for the effect of drizzle upon k, the cube of the ratio between the volume and effective radius. Observational evidence from flights in a range of different air-mass types is presented to validate the approach. The results suggest that the value of k pertaining to the small droplets is better parametrized as a function of volume radius rather than of droplet concentration. The results also suggest that, as the ratio of liquid-water content contained in the large droplets to that in the small droplets increases beyond 0.05, the value of it decreases significantly. This results in an underprediction of the effective radius if commonly used parametrizations for k are used. [source] |