Home About us Contact | |||
Smart Materials (smart + material)
Selected AbstractsFrom Molecular Machines to Microscale Motility of Objects: Application as "Smart Materials", Sensors, and NanodevicesADVANCED FUNCTIONAL MATERIALS, Issue 5 2007I. Willner Abstract Machinelike operations are common functions in biological systems, and substantial recent research efforts are directed to mimic such processes at the molecular or nanoscale dimensions. The present Feature Article presents three complementary approaches to design machinelike operations: by the signal-triggered mechanical shuttling of molecular components; by the signal-triggering of chemical processes on surfaces, resulting in mechanical motion of micro/nanoscale objects; and by the fuel-triggered motility of biomolecule,metal nanowire hybrid systems. The shuttling of molecular components on molecular wires assembled on surfaces in semirotaxane configurations using electrical or optical triggering signals is described. The control of the hydrophilic/hydrophobic surface properties through molecular shuttling or by molecular bending/stretching processes is presented. Stress generated on microelements, such as cantilevers, results in the mechanical deflection of the cantilever. The deposition of a redox-active polyaniline film on a cantilever allows the reversible electrochemically induced deflection and retraction of the cantilever by the electrochemical oxidation or reduction of the polymer film, respectively. A micro-robot consisting of the polypyrrole (PPy) polymer deposited on a multi-addressable configuration of electrodes is described. Au magnetic core/shell nanoparticles are incorporated into a polyaniline film, and the conductivity of the composite polymer is controlled by an external magnet. Finally, the synthesis of a hybrid nanostructure consisting of two actin filaments tethered to the two ends of a Au nanowire is described. The adenosine triphosphate (ATP)-fueled motility of the hybrid nanostructure on a myosin monolayer associated with a solid support is demonstrated. [source] Smart materials based on self-assembled hydrogen-bonded comb-shaped supramoleculesTHE CHEMICAL RECORD, Issue 4 2004Gerrit Ten Brinke Abstract Block copolymer self-assembly and supramolecular chemistry can be combined most naturally to prepare smart polymer nanomaterials. An attractive route is based on comb-shaped supramolecules, obtained by attaching side chains to (co)polymers by physical (non-covalent) interactions. Hydrogen bonding is a key element of our approach. It combines an ease of synthesis with other important approach-specific elements, such as hierarchical self-assembly, strongly enhanced processability, swelling, and cleaving. Functional properties discussed include anisotropic proton conductivity, switching proton conductivity, electronically conducting nanowires, polarized luminance, dielectric stacks (optical reflectivity), functional membranes, and nano objects. © 2004 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 4: 219,230; 2004: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20018 [source] Anisotropic contraction in forisomes: Simple models won't fitCYTOSKELETON, Issue 5 2008Winfried S. Peters Abstract Forisomes are ATP-independent, Ca2+ -driven contractile protein bodies acting as reversible valves in the phloem of plants of the legume family. Forisome contraction is anisotropic, as shrinkage in length is associated with radial expansion and vice versa. To test the hypothesis that changes in length and width are causally related, we monitored Ca2+ - and pH-dependent deformations in the exceptionally large forisomes of Canavalia gladiata by high-speed photography, and computed time-courses of derived geometric parameters (including volume and surface area). Soybean forisomes, which in the resting state resemble those of Canavalia geometrically but have less than 2% of the volume, were also studied to identify size effects. Calcium induced sixfold volume increases in forisomes of both species; in soybean, responses were completed in 0.15 s, compared to about 0.5 s required for a rapid response in Canavalia followed by slow swelling for several minutes. This size-dependent behavior supports the idea that forisome contractility might rest on similar mechanisms as those of polyelectrolyte gels, a class of artificial "smart" materials. In both species, time-courses of forisome length and diameter were variable and lacked correlation, arguing against a simple causal relationship between changes in length and width. Moreover, changes in the geometry of soybean forisomes differed qualitatively between Ca2+ - and pH-responses, suggesting that divalent cations and protons target different sites on the forisome proteins. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] High-Strain Shape-Memory PolymersADVANCED FUNCTIONAL MATERIALS, Issue 1 2010Walter Voit Abstract Shape-memory polymers (SMPs) are self-adjusting, smart materials in which shape changes can be accurately controlled at specific, tailored temperatures. In this study, the glass transition temperature (Tg) is adjusted between 28 and 55,°C through synthesis of copolymers of methyl acrylate (MA), methyl methacrylate (MMA), and isobornyl acrylate (IBoA). Acrylate compositions with both crosslinker densities and photoinitiator concentrations optimized at fractions of a mole percent demonstrate fully recoverable strains at 807% for a Tg of 28,°C, at 663% for a Tg of 37,°C, and at 553% for a Tg of 55,°C. A new compound, 4,4,-di(acryloyloxy)benzil (referred to hereafter as Xini) in which both polymerizable and initiating functionalities are incorporated in the same molecule, was synthesized and polymerized into acrylate shape-memory polymers, which were thermomechanically characterized yielding fully recoverable strains above 500%. The materials synthesized in this work were compared to an industry standard thermoplastic SMP, Mitsubishi's MM5510, which showed failure strains of similar magnitude, but without full shape recovery: residual strain after a single shape-memory cycle caused large-scale disfiguration. The materials in this study are intended to enable future applications where both recoverable high-strain capacity and the ability to accurately and independently position Tg are required. [source] Preface: phys. stat. sol. (b) 245/3PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2008Christopher W. Smith This is the third Special Issue of physica status solidi (b) focusing on materials with a negative Poisson's ratio or other ,anomalous' physical properties. This issue contains selected papers from the First International Conference on Auxetics and Anomalous Systems held at the University of Exeter, UK, on 4,6 September 2006. Around 50 participants from all over the world as well as from a wide range of scientific and engineering disciplines contributed to what was a highly successful conference. This conference follows in the footsteps of two previous workshops held at the Mathematical Research and Conference Centre in B,dlewo near Pozna,, Poland, in 2004 and 2005 [1, 2]. The papers selected for this issue publish recent results obtained for ,anomalous systems' in experiment, theory and computer simulations. In the following we summarize very briefly their contents. Alderson and Coenen compare the performance of auxetic composites to similar systems with conventional positive Poisson's ratios. They find that there are indeed differences which appear to arise from the change of the overall Poisson's ratio of the composite, some beneficial like a rise in impact tolerance at low impact rates, and others deleterious such as the reduced tolerance at higher impact rates. This is one of the first investigations of possible applications for auxetic materials. The two papers by Gaspar and Koenders both examine the effects of disorder upon anomalous properties, especially negative Poisson's ratio. In the first one Gaspar demonstrates how a mean strain estimate fails to predict negative values of Poisson's ratio because of an inability to account for local fluctuations in elastic properties. For instance it is shown that the volume fraction of auxetic regions in an globally auxetic material (measured experimentally) are smaller than a mean strain homogenisation would require. Koenders and Gaspar explore the elastic properties, and especially Poisson's ratio, of a heterogeneous 2D network of bending beams. They predict auxetic behaviour arising from localised disorder in the packing, and therefore effective locally aggregated elastic properties of the beams. In the three articles by Gatt et al. and Grima et al. models based on simple geometry are used to explain the behaviour of seemingly disparate systems, i.e. 2D honeycombs systems and zeolite SiO2 networks. Two papers concerning honeycombs demonstrate relationships between elastic properties and structure and the bounds for auxetic behaviour. The paper concerning the zeolite Natrolite uses numerical force field based energy minimisation methods to simulate the response of this particular zeolite to applied forces and then simplifies the predicted properties even further by considering structural units as rigid 2D polyhedra linked by flexible hinges. In a similar vein, though using a different approach and concerning a very different form of matter, Heyes shows how the heterogeneity in an assembly of particles in a liquid can affect the elastic properties of a liquid and notably the infinite frequency Poisson's ratio. Heyes uses the Molecular Dynamics approach to simulate a Lennard,Jones fluid under various pressures, notably comparing behaviour under positive and negative pressures. In their first paper Jasiukiewicz and co-authors derive elastic constants of 2D crystals for all four classes of 2D crystalline solids: hexagonal (isotropic), quadratic, rectangular, and oblique systems. In their second paper they demonstrate conditions required for auxetic behaviour of 2D crystals. Auxetic solids are further divided into those with some negative Poisson's ratios (auxetic), all negative Poisson's ratios (completely auxetic) and no negative Poisson's ratios (non-auxetic). Lakes and Wojciechowski consider counterintuitive properties of matter, like negative compressibility, negative Poisson's ratio, negative thermal expansion, negative specific heat, and negative pressure. They present and interpret experimental observations of negative bulk modulus in pre-strained foams. They propose also a constrained microscopic model which exhibits negative compressibility. Finally, they solve a very simple thermodynamic model with negative thermal expansion. Martin et al. take a long stride toward a real world application of auxetic materials with a wide ranging study starting with numerical modelling of a wingbox section to experimental testing in a wind tunnel. They show that an auxetic core in a wing box section can allow a passive aero-elastic response which can be tailored by careful design of the core so that camber, and thus drag, is reduced with increasing airspeed but without sacrificing structural integrity. Miller et al. consider another anomalous physical property, negative thermal expansivity, and its application in the form of particulate composites for amelioration of stresses arising from thermal mismatch. They show via experiments that particles with a negative coefficient of thermal expansion may be used as a composite reinforcer to reduce overall thermal expansion and behave according to the standard volume fraction based models. Narojczyk and Wojciechowski examine the effects of disorder upon the bulk elastic properties of 3D fcc soft sphere systems in terms of particle size. Systems, such as colloids, can be thought of in such terms. The study shows that higher order moments of probability distribution do not influence the bulk elastic properties much, but that lower moments such as the standard deviation of particle size influence the elastic properties greatly. The "hardness" of the particle interaction potential is also important in this context. In general, it is shown that the effect of increasing polydispersity is to increase the Poisson's ratio, except the [110] [10] directions. Scarpa and Malischewsky in their paper on Rayleigh waves in auxetic materials show how the Rayleigh wave speed is affected by the Poisson's ratio. The behaviour is complex and depends upon the homogeneity within the material, for instance slowing with decreasing Poisson's ratio in isotropic solids, but showing the reverse trend and increased sensitivity to Poisson's ratio in laminate composites. Scarpa et al. explore the buckling behaviour of auxetic tubes via three types of model, a simple beam mechanics and Eulerian buckling model, a 3D linear elastic FE model and a bespoke non-linear continuum model. The more sophisticated models provide increasing insight into the buckling behaviour though the simple beam model predicts reasonably well in the pre-buckling linear region. Some unexpected and interesting behaviour is predicted by the continuum model as the Poisson's ratio approaches the isotropic limit of ,1, including increasing sensitivity to Poisson's ratio and rapid mode jumping between integer wave numbers. The paper by Shilko et al. presents an analysis of a particular kind of friction joint, a double lap joint, and explores the effects of altering the elastic properties of one component, in particular it's Poisson's ratio. The manuscript introduces the evolution of smart materials from monolithic materials, and the classification of composites exhibiting negative Poisson's ratios. The paper then presents the case of a double lap joint and performs a sensitivity type study, via a 2D FE model, of the effects of changing the elastic properties and degree of anisotropy of one section of the model on various parameters defining the limits of functionality of the joint. The main finding is that an enhanced shear modulus, via a negative Poisson's ratio, can endow such a friction joint with superior performance. Manufacturing of auxetic materials on a commercial scale has proved to be the largest obstacle to their fuller exploitation. The paper by Simkins et al. explores one route for post processing of auxetic polymers fibres produced by a conventional melt extrusion route. Simkins et al. showed that a post process thermal annealing treatment, with carefully optimised parameters, was able to even out otherwise inhomogenous auxetic properties, and moreover improve other elastic and fracture properties often sacrificed for auxetic behaviour. We gratefully acknowledge the support given by the sponsors of the conference, namely the EPSRC of the UK and Auxetic Technologies Ltd. (UK). We also thank the Scientific Committee, the Organising Committee, and all the participants of the conference. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Magnetorheological elastomers based on isobutylene,isoprene rubberPOLYMER ENGINEERING & SCIENCE, Issue 3 2006Yinling Wang Magnetorheological (MR) elastomers are a group of smart materials whose modulus can be controlled by the application of an external magnetic field. In this paper, MR elastomers based on isobutylene,isoprene rubber were prepared by the common manufacturing procedure of rubber and the corresponding MR effect, mechanical properties, and thermal stability were investigated. The results showed that MR effect varied with the volume content of iron particles and a maximum of 20% in MR effect was obtained at 15 vol% of iron particles. The relationship between MR effect and microstructure was discussed in detail. Mechanical tests showed that iron particles could improve the tensile strength and hardness. However, compared with carbon black with the same volume content, the reinforcing effect was far worse. TG analysis showed the thermal stability of isobutylene,isoprene rubber was improved by incorporation of iron particles. POLYM. ENG. SCI. 46:264,268, 2006. © 2006 Society of Plastics Engineers [source] Assembling DNA into Advanced Materials: From Nanostructured Films to Biosensing and Delivery Systems,ADVANCED MATERIALS, Issue 21 2007Abstract The past decade has witnessed a rapid expansion in the design and assembly of engineered materials for biological applications. However, such applications place limitations on the molecular building blocks that can be used. Requirements for polymer-based building blocks include biocompatibility, biodegradability, and stimuli-responsive behavior. Many traditional polymers used in materials science are limited in at least one of these areas, so new polymers need to be explored. As we outline here, DNA is one such polymer that shows promise in developing the next generation of ,smart' materials for biomedical and diagnostic applications. [source] Long-term cytotoxicity of resin-based dental restorative materialsJOURNAL OF ORAL REHABILITATION, Issue 1 2002S. Bouillaguet Highly filled composites, Ormocers (organically modified ceramics) and ,smart' materials have been developed to overcome the polymerization shrinkage problems of conventional composite materials. The purpose of the current study was to investigate the effect of longer-term (up to 8 weeks) ageing of these resin-based dental restorative materials and determine the effect of post-curing on cytotoxicity. Twelve discs of each material (Colombus/IDR, Definite/Degussa, Ariston pHc/Vivadent) were either light-cured (Lc) or light-cured and post-cured (Pc). For cytotoxicity testing, the discs were placed in contact with cell culture medium (DMEM) and incubated at 37 °C. Extracts from composite materials were collected after 24 h and weekly over a time period of 8 weeks. Cytotoxicity of the eluates to cultured fibroblasts (Balb/c3T3) were measured by the succinic dehydrogenase (SDH) activity (MTT assay) and the results expressed in percentage of negative controls (Teflon discs). The results showed that ageing significantly influenced the cytotoxicity of the materials. Except for Ariston pHc, materials were less cytotoxic after 8 weeks of ageing than they were in early intervals and post-curing was not generally useful in reducing cytotoxicity. The Ariston pHc was initially moderately toxic, but then become highly cytotoxic for 5 weeks before returning to initial levels. The current study demonstrated the importance of assessing the cytotoxicity of resin composite materials at multiple times. [source] |