Home About us Contact | |||
Smad Signaling Pathway (smad + signaling_pathway)
Selected AbstractsRole of Increased Penile Expression of Transforming Growth Factor-,1 and Activation of the Smad Signaling Pathway in Erectile Dysfunction in Streptozotocin-Induced Diabetic RatsTHE JOURNAL OF SEXUAL MEDICINE, Issue 10 2008Lu Wei Zhang MD ABSTRACT Introduction., It has been suggested that transforming growth factor-,1 (TGF-,1) plays an important role in the pathogenesis of diabetes-induced erectile dysfunction. Aim., To investigate the expression and activity of Smad transcriptional factors, the key molecules for the initiation of TGF-,-mediated fibrosis, in the penis of streptozotocin (STZ)-induced diabetic rats. Methods., Fifty-two 8-week-old Sprague,Dawley rats were used and divided into control and diabetic groups. Diabetes was induced by an intravenous injection of STZ. Main Outcome Measures., Eight weeks later, erectile function was measured by electrical stimulation of the cavernous nerve (N = 12 per group). The penis was harvested and stained with Masson trichrome or antibody to TGF-,1, phospho-Smad2 (P-Smad2), smooth muscle ,-actin, and factor VIII (N = 12 per group). Penis specimens from a separate group of animals were used for TGF-,1 enzyme-linked immunosorbent assay (ELISA), P-Smad2/Smad2, phospho-Smad3 (P-Smad3)/Smad3, fibronectin, collagen I, and collagen IV western blot, or hydroxyproline determination. Results., Erectile function was significantly reduced in diabetic rats compared with that in controls. The expression of TGF-,1, P-Smad2, and P-Smad3 protein evaluated by ELISA or western blot was higher in diabetic rats than in controls. Compared with that in control rats, P-Smad2 expression was higher mainly in smooth muscle cells and fibroblasts of diabetic rats, whereas no significant differences were noted in endothelial cells or in the dorsal nerve bundle. Cavernous smooth muscle and endothelial cell contents were lower in diabetic rats than in controls. Cavernous fibronectin, collagen IV, and hydroxyproline content was significantly higher in diabetic rats than in controls. Conclusion., Upregulation of TGF-,1 and activation of the Smad signaling pathway in the penis of diabetic rats might play important roles in diabetes-induced structural changes and deterioration of erectile function. Zhang LW, Piao S, Choi MJ, Shin H-Y, Jin H-R, Kim WJ, Song SU, Han J-Y, Park SH, Mamura M, Kim S-J, Ryu J-K, and Suh J-K. Role of increased penile expression of transforming growth factor-,1 and activation of the Smad signaling pathway in erectile dysfunction in streptozotocin-induced diabetic rats. J Sex Med 2008;5:2318,2329. [source] Role of TIEG1 in biological processes and disease statesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2007Malayannan Subramaniam Abstract A novel TGF, Inducible Early Gene-1 (TIEG1) was discovered in human osteoblast (OB) cells by our laboratory. Over the past decade, a handful of laboratories have revealed a multitude of organismic, cellular, and molecular functions of this gene. TIEG1 is now classified as a member of the 3 zinc finger family of Krüppel-like transcription factors (KLF10). Other closely related factors [TIEG2 (KLF11) and TIEG3/TIEG2b] have been reported and are briefly compared. As described in this review, TIEG1 is shown to play a role in regulating estrogen and TGF, actions, the latter through the Smad signaling pathway. In both cases, TIEG1 acts as an inducer or repressor of gene transcription to enhance the TGF,/Smad pathway, as well at other signaling pathways, to regulate cell proliferation, differentiation, and apoptosis. This review outlines TIEG1's molecular functions and roles in skeletal disease (osteopenia/osteoporosis), heart disease (hypertrophic cardiomyopathy), and cancer (breast and prostate). J. Cell. Biochem. 102: 539,548, 2007. © 2007 Wiley-Liss, Inc. [source] Role of Increased Penile Expression of Transforming Growth Factor-,1 and Activation of the Smad Signaling Pathway in Erectile Dysfunction in Streptozotocin-Induced Diabetic RatsTHE JOURNAL OF SEXUAL MEDICINE, Issue 10 2008Lu Wei Zhang MD ABSTRACT Introduction., It has been suggested that transforming growth factor-,1 (TGF-,1) plays an important role in the pathogenesis of diabetes-induced erectile dysfunction. Aim., To investigate the expression and activity of Smad transcriptional factors, the key molecules for the initiation of TGF-,-mediated fibrosis, in the penis of streptozotocin (STZ)-induced diabetic rats. Methods., Fifty-two 8-week-old Sprague,Dawley rats were used and divided into control and diabetic groups. Diabetes was induced by an intravenous injection of STZ. Main Outcome Measures., Eight weeks later, erectile function was measured by electrical stimulation of the cavernous nerve (N = 12 per group). The penis was harvested and stained with Masson trichrome or antibody to TGF-,1, phospho-Smad2 (P-Smad2), smooth muscle ,-actin, and factor VIII (N = 12 per group). Penis specimens from a separate group of animals were used for TGF-,1 enzyme-linked immunosorbent assay (ELISA), P-Smad2/Smad2, phospho-Smad3 (P-Smad3)/Smad3, fibronectin, collagen I, and collagen IV western blot, or hydroxyproline determination. Results., Erectile function was significantly reduced in diabetic rats compared with that in controls. The expression of TGF-,1, P-Smad2, and P-Smad3 protein evaluated by ELISA or western blot was higher in diabetic rats than in controls. Compared with that in control rats, P-Smad2 expression was higher mainly in smooth muscle cells and fibroblasts of diabetic rats, whereas no significant differences were noted in endothelial cells or in the dorsal nerve bundle. Cavernous smooth muscle and endothelial cell contents were lower in diabetic rats than in controls. Cavernous fibronectin, collagen IV, and hydroxyproline content was significantly higher in diabetic rats than in controls. Conclusion., Upregulation of TGF-,1 and activation of the Smad signaling pathway in the penis of diabetic rats might play important roles in diabetes-induced structural changes and deterioration of erectile function. Zhang LW, Piao S, Choi MJ, Shin H-Y, Jin H-R, Kim WJ, Song SU, Han J-Y, Park SH, Mamura M, Kim S-J, Ryu J-K, and Suh J-K. Role of increased penile expression of transforming growth factor-,1 and activation of the Smad signaling pathway in erectile dysfunction in streptozotocin-induced diabetic rats. J Sex Med 2008;5:2318,2329. [source] Functional role of KLF10 in multiple disease processesBIOFACTORS, Issue 1 2010Malayannan Subramaniam Abstract Since the discovery by this laboratory of the zinc finger transcription factor, KLF10, a member of the Krüppel-like family of transcription factors, there have been multiple publications regarding its functions and its immediate family members, in numerous cell types. KLF10 has been shown to be rapidly induced by TGF,1, 2, 3, E2, epidermal growth factor, and bone morphogenetic protein-2. TGF, inducible early gene-1 activates the TGF,-Smad signaling pathway via repression of Smad 7 expression and activation of Smad 2 expression and activity. Overall, KLF10 has been implicated in cell differentiation, as a target gene for a variety of signaling pathways, and in serving as a potential marker for human diseases such as breast cancer, cardiac hypertrophy, and osteoporosis. Like other KLF members, KLF10 is expressed in specific cell types in numerous tissues and is known to be involved in repressing cell proliferation and inflammation as well as inducing apoptosis similar to that of TGF,. KLF10 binds to Sp-1-GC rich DNA sequences and can activate or repress the transcription of a number of genes. Overall, KLF10 has been shown to play a major role in the TGF, inhibition of cell proliferation and inflammation and induction of apoptosis, and its overexpression in human osteoblasts and pancreatic carcinoma cells mimics the actions of TGF,. [source] |