Home About us Contact | |||
Slip
Kinds of Slip Terms modified by Slip Selected AbstractsSpontaneous localized intestinal perforation and intestinal dilatation in very-low-birthweight infantsACTA PAEDIATRICA, Issue 11 2006Tsugumichi Koshinaga Abstract Aim: To elucidate how spontaneous localized intestinal perforation (SLIP) is related to intestinal morphological features such as dilatation in very-low-birthweight (VLBW) infants. Methods: The medical records of 13 VLBW infants (<1500 g) undergoing laparotomy between 1983 and 2003 for presumed SLIP were retrospectively reviewed. Clinical findings including maternal, prenatal and perinatal factors were analysed, and the clinical and surgical findings upon laparotomy were compared. Results: Postnatal pathological conditions included patent ductus arteriosus (n= 7), sepsis (n= 2), respiratory distress syndrome (n= 7), intraventricular haemorrhage (n= 2), an indwelling catheter via the umbilical vein (n= 1) and pneumonia (n= 1). Indomethacin was used in seven neonates with patent ductus arteriosus, and dexamethasone preventive therapy was employed in one neonate for bronchopulmonary dysplasia. Operative findings revealed a localized small punched-out perforation in the ileum. Five patients had intestinal dilatation: two with a perforation in the middle of the dilated intestine, and three with a perforation proximal to the region of dilatation. The muscularis propria was absent in the dilated intestine of four patients. Conclusion: This study found no significant relationship between perforation and dilatation of the intestine. Perforation may occur in any portion of the ischaemic intestine when circulatory failure becomes severe, and is not necessarily restricted to the dilated intestine. We believe that SLIP and intestinal dilatation may occur on the same basis in low-birthweight infants; however, the disease process may be aetiologically different. [source] NATURE AND MICROSTRUCTURE OF GALLIC IMITATIONS OF SIGILLATA SLIPS FROM THE LA GRAUFESENQUE WORKSHOP*ARCHAEOMETRY, Issue 5 2009C. MIRGUET The red glaze (slip) that characterizes the Terra Sigillata potteries greatly contributed to their success during the Roman period. The colour of the slip can in fact be partially explained by the microstructure (crystalline phases, grain sizes) and the physico-chemistry (composition) of the ceramics. However, the precise process and the diffusion of this technique are still not fully known. In particular, we do not know yet how the production of sigillata took place in the south of Gaul, and the role that was played by the production under Italian influence (pre-sigillata) preceding the first local sigillata. In this work, a combination of transmission electron microscopy (TEM) and X-ray synchrotron diffraction techniques was used to study the microstructure of pre-sigillata slips from the main southern Gaul workshop (La Graufesenque), in order to compare their characteristics with those of high-quality sigillata. These first results seem to indicate that the antique potters chose clays adapted to their firing conditions and to the type of coating that they wanted to make. These productions cannot be described as an initial phase for the later sigillata production and, rather, seem to correspond to the intention of developing a specific type of pottery only inspired by the famous Italian sigillata forms. [source] CHARACTERIZATION OF CORAL RED SLIPS ON GREEK ATTIC POTTERY,ARCHAEOMETRY, Issue 3 2009M. S. WALTON Samples of red and black gloss from Greek Attic pottery of the late sixth to fifth centuries bc were examined using scanning electron microscopy (SEM and FIB/STEM). The focus of the study was the chemical and microstructural characterization of the red gloss that was first produced during this period. Two groupings of red gloss were revealed. One red was found to be compositionally similar to the black glosses (labelled ,LCM coral red'). The other red showed more significant chemical differences, such as higher calcium and magnesium, in comparison to the black (labelled ,HCM coral red'). The existence of two chemically distinct reds,otherwise identical in colour and texture,suggests that there was more than one source of clay available to the Attic potters for producing red. [source] A Comparison Study of Rhodamine,B Photodegradation over Nitrogen-Doped Lamellar Niobic Acid and Titanic Acid under Visible-Light IrradiationCHEMISTRY - A EUROPEAN JOURNAL, Issue 14 2009Xiukai Li Dr. Abstract Slip between the sheets! The intercalation properties of lamellar solid acids have a profound impact on nitrogen doping as well as on the resultant visible-light photocatalysis, and the effects depend strongly on the protonic acidities of the samples (see figure). A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb3O8 and H2Ti4O9) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine,B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb3O8 sample than for the less acidic H2Ti4O9. Compared with the nitrogen-doped KNb3O8 and K2Ti4O9 samples, the nitrogen-doped HNb3O8 and H2Ti4O9 solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb3O8 sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis. [source] Technological Characterization of Campanian Pottery of Type A, B and C and of Regional Products from Ancient Calabria (Southern Italy)ARCHAEOMETRY, Issue 1 2001P. Mirti Sherds of Campanian pottery were studied by SEM-EDX. SEM images show that slips of Campana C are scarcely sintered and are thicker than the well vitrified coatings of Campana A and B and imitations of Campana B. Slips of products with a grey slip on a grey body are very thin and well vitrified. EDX analyses indicate that slips are richer in aluminium and iron, and poorer in silicon and calcium, with respect to the bodies. Higher potassium is also found in all of the coatings except those of Campana A. Here relatively high sodium makes the total alkalis comparable with those of the other products, except Campana C, where it is somewhat lower. Measurement of thermal expansion and X-ray powder diffractograms suggest that firing temperatures were mostly in excess of 900°C, but some samples of Campana C seem to have been fired below 800°C. [source] Self-centering structural systems with combination of hysteretic and viscous energy dissipationsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2010Weng Yuen Kam Abstract This paper presents an innovative set of high-seismic-resistant structural systems termed Advanced Flag-Shaped (AFS) systems, where self-centering elements are used with combinations of various alternative energy dissipation elements (hysteretic, viscous or visco-elasto-plastic) in series and/or in parallel. AFS systems is developed using the rationale of combining velocity-dependent with displacement-dependent energy dissipation for self-centering systems, particularly to counteract near-fault earthquakes. Non-linear time-history analyses (NLTHA) on a set of four single-degree-of-freedom (SDOF) systems under a suite of 20 far-field and 20 near-fault ground motions are used to compare the seismic performance of AFS systems with the conventional systems. It is shown that AFS systems with a combination in parallel of hysteretic and viscous energy dissipations achieved greater performance in terms of the three performance indices. Furthermore, the use of friction slip in series of viscous energy dissipation is shown to limit the peak response acceleration and induced base-shear. An extensive parametric analysis is carried out to investigate the influence of two design parameters, ,1 and ,2 on the response of SDOF AFS systems with initial periods ranging from 0.2 to 3.0,s and with various strength levels when subjected to far-field and near-fault earthquakes. For the design of self-centering systems with combined hysteretic and viscous energy dissipation (AFS) systems, ,1 is recommended to be in the range of 0.8,1.6 while ,2 to be between 0.25 and 0.75 to ensure sufficient self-centering and energy dissipation capacities, respectively. Copyright © 2010 John Wiley & Sons, Ltd. [source] In Situ and Ex Situ Nanomechanical Analysis of Reactive Nanolayer Solder Joints,ADVANCED ENGINEERING MATERIALS, Issue 8 2009Michael Tong The nanomechanical behavior of NiAl derived from explosively RNLs in reactive solder joints is studied using in situ nanocompression and nanoindentation. We report the direct analysis of <011> slip and discuss the role it plays in the much disputed ductility of NiAl. The hardness, modulus, and residual stress in the NiAl layer are studied by load-displacement curve analysis. [source] A critical plane fatigue model with coupled meso-plasticity and damageFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 1 2008N. HUYEN ABSTRACT The work proposed in this paper is a possible way of modelling some local observations at the surface of mild steel specimens submitted to uniaxial and multiaxial loads. It is clearly seen that local plasticity, controlled by local microstructural heterogeneities, plays a fundamental role in microcrack nucleation and damage orientation is closely related to the applied loading mode. The framework of irreversible thermodynamics with internal variables for time-independent, isothermal and small deformations has been used to build a critical plane damage model by assuming the existence of a link between mesoplasticity and mesodamage. Non-associated plasticity and damage rules allow the evolution of some plastic slip before any damage nucleation, as seen during the observations. A key feature of this proposal is the capacity to reflect nonlinear damage accumulation under variable amplitude loading. [source] Fatigue as a process of cyclic brittle microfractureFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 3 2005R. SUNDER ABSTRACT While fatigue crack growth in vacuum may occur by slip alone, environmental fatigue including crack growth in air is strongly influenced by crack-tip surface chemistry that adversely affects ductility. Cumulative diffusion, combined with adsorption and chemisorption in the loading half-cycle may promote instantaneous crack extension by brittle microfracture (BMF). Unlike slip, the BMF component will be sensitive to parameters that affect near-tip stresses, such as load history and constraint. BMF dominates near-threshold environmental fatigue. Being a surface phenomenon, it loses its significance with increasing growth rate, as slip-driven crack extension gains momentum and growth becomes less sensitive to environment. The BMF model provides for the first time, a scientific rationale for the residual stress effect as well as the related connection between stress,strain hysteresis and load-sequence sensitivity of metal fatigue including notch response. Experimental evidence obtained on a variety of materials under different loading conditions in air and vacuum appears to support the proposed model and its implications. [source] Fretting fatigue limit as a short crack problem at the edge of contactFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2004Y. KONDO ABSTRACT This paper proposes a local stress concept to evaluate the fretting fatigue limit for contact edge cracks. A unique S,N curve based on the local stress could be obtained for a contact edge crack irrespective of mechanical factors such as contact pressure, relative slip, contact length, specimen size and loading type. The analytical background for the local stress concept was studied using FEM analysis. It was shown that the local stress uniquely determined the ,K change due to crack growth as well as the stress distribution near the contact edge. The condition that determined the fretting fatigue limit was predicted by combining the ,K change due to crack growth and the ,Kth for a short crack. The formation of a non-propagating crack at the fatigue limit was predicted by the model and it was experimentally confirmed by a long-life fretting fatigue test. [source] Ratcheting and fatigue-led wear in rail,wheel contactFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 10 2003F. J. FRANKLIN ABSTRACT A computer model, which simulates the ratcheting wear of a ductile material subject to repeated loading, is presented and discussed in detail. Variation of material properties is a feature of the model, failure by ductility exhaustion occurring at isolated points or extending regions of failure. Such regions form crack-like features. Mechanisms for removal of weakened material from the surface as wear debris are described. The wear process causes a degree of surface roughness. The simplicity of the model enables simulation of millions of load cycles in only a few hours' computer time. The computer model is used to study the effect of partial slip on wear rate. When creepage is relatively low, the wear rate increases sharply with creepage. When creepage is relatively high, the wear rate is largely insensitive to the creepage. [source] S,N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steelFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 12 2001K. Shiozawa The S,N curve obtained from cantilever-type rotary bending fatigue tests using hour-glass-shaped specimens of high carbon-chromium bearing steel clearly distinguished the fracture modes into two groups each having a different crack origin. One was governed by crystal slip on the specimen surface, which occurred in the region of short fatigue life and a high stress amplitude level. The other was governed by a non-metallic inclusion at a subsurface level which occurred in the region of long fatigue life and low stress amplitude. The inclusion developed a fish-eye fracture mode that was distributed over a wide range of stress amplitude not only below the fatigue limit defined as the threshold for fracture due to the surface slip mode but also above the fatigue limit. This remarkable shape of the S,N curve was different from the step-wise one reported in previous literature and is characterized as a duplex S,N curve composed of two different S,N curves corresponding to the respective fracture modes. From detailed observations of the fracture surface and the fatigue crack origin, the mechanisms for the internal fracture mode and the characteristics of the S,N curve are discussed. [source] Full scale experiments for evaluating theoretical fire wall modelsFIRE AND MATERIALS, Issue 6 2004P. Clancy Abstract The aim of the research described in this paper was to provide experimental results for the evaluation of theoretical models for predicting the behaviour and time-to-failure of loadbearing and non-loadbearing wood framed walls in fire. References for thermal and mechanical properties of wood and gypsum board are given to provide comprehensive input for the evaluation of theoretical wall models. The scope of the research involved full-scale uninsulated cavity walls with well-controlled clearly known conditions including initial ambient vertical load capacity for benchmarking the reduction in capacity and stiffness, rotational stiffness of supports, eccentricity of vertical load, elastic moduli of wood and gypsum board in compression, stiffness of slip between gypsum board and studs and end stud effects. The experiments were repeated and they demonstrated that the controls led to high consistency in the results despite the inherent large variability of the mechanical properties of wood. The results include temperature distributions, initial vertical load capacity, load-deflection plots and times-to-failure. The results show that the temperatures in the studs are approximately uniform until all the moisture is vaporized. Thermal properties of wood will not vary significantly for consistent density, moisture content and species of wood. The main structural actions that should be modelled for different loading regimes are deduced. Copyright © 2004 John Wiley & Sons, Ltd. [source] A geometric and kinematic model for double-edge propagating thrusts involving hangingwall and footwall folding.GEOLOGICAL JOURNAL, Issue 5-6 2010An example from the Jaca, Pamplona Basin (Southern Pyrenees) Abstract A new geometric and kinematic model is proposed for a particular type of fault-related folding based on the study of a natural example developed in Palaeogene carbonate rocks from the Jaca,Pamplona Basin (Southern Pyrenees). The example consists of a hangingwall anticline related to a reverse fault with variable displacement and a gentle footwall syncline. A detailed structural analysis of the structure and a cross-section, perpendicular to its axis and parallel to the transport direction, reveals that none of the previous published models of fault-related folds is able to simulate its main characteristics and reproduce its geometry. The main features of the new model are: double-edge propagating fault and folding developed in both the hangingwall and the footwall. A MATLAB-based program was created to calculate structural parameters such as shortening, structural relief and fault slip; obtain graphs of different parameters such as shortening versus slip along the fault, shortening versus fault length, and produce sections across forward models showing the different stages of fold growth. The model presented here gives an acceptable geometrical fit to the studied natural structure and provides a reasonable evolutionary history. In addition, the results obtained using the model are similar to those measured on the cross-section. As a final step the subsurface portion of the natural fold was completed following the constraints imposed by the model. Copyright © 2010 John Wiley & Sons, Ltd. [source] Extensional development of the Fundy rift basin, southeastern CanadaGEOLOGICAL JOURNAL, Issue 6 2009Martha O. Withjack Abstract The Fundy rift basin of Nova Scotia and New Brunswick, Canada, is part of the Eastern North American rift system that formed during the breakup of Pangaea. Integrated seismic-reflection, field, digital-elevation and aeromagnetic data indicate that the Fundy rift basin underwent two phases of deformation: syn-rift extension followed by post-rift basin inversion. Inversion significantly modified the geometries of the basin and its rift-related structures. In this paper, we remove the effects of inversion to examine the basin's extensional development. The basin consists of three structural subbasins: the Fundy and Chignecto subbasins are bounded by low-angle, NE-striking faults; the Minas subbasin is bounded by E- to ENE-striking faults that are steeply dipping at the surface and gently dipping at depth. Together, these linked faults form the border,fault system of the Fundy rift basin. Most major faults within the border,fault system originated as Palaeozoic contractional structures. All syn-rift units imaged on seismic profiles thicken towards the border,fault system, reflecting extensional movement from Middle Triassic (and possibly Permian) through Early Jurassic time. Intra-rift unconformities, observed on seismic profiles and in the field, indicate that uplift and erosion occurred, at least locally, during rifting. Based on seismic data alone, the displacement direction of the hanging wall of the border,fault system of the Fundy rift basin ranged from SW to SE during rifting. Field data (i.e. NE-striking igneous dykes, sediment-filled fissures and normal faults) indicate NW,SE extension during Early Jurassic time, supporting a SE-displacement direction. With a SE-displacement direction, the NE-striking border,fault zones of the Fundy and Chignecto subbasins had predominantly normal dip slip during rifting, whereas the E-striking border,fault zone of the Minas subbasin had oblique slip with left-lateral and normal components. Sequential restorations of seismic-reflection profiles (coupled with projections from onshore geology) show that the Fundy rift basin underwent 10,20,km of extension, most of which was accommodated by the border,fault system, and was considerably wider and deeper prior to basin inversion. Post-rift deformation tilted the eastern side of the basin to the northwest/north, producing significant uplift and erosion. Copyright © 2009 John Wiley & Sons, Ltd. [source] Seismicity in a model governed by competing frictional weakening and healing mechanismsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2009G. Hillers SUMMARY Observations from laboratory, field and numerical work spanning a wide range of space and time scales suggest a strain dependent progressive evolution of material properties that control the stability of earthquake faults. The associated weakening mechanisms are counterbalanced by a variety of restrengthening mechanisms. The efficiency of the healing processes depends on local material properties and on rheologic, temperature, and hydraulic conditions. We investigate the relative effects of these competing non-linear feedbacks on seismogenesis in the context of evolving frictional properties, using a mechanical earthquake model that is governed by slip weakening friction. Weakening and strengthening mechanisms are parametrized by the evolution of the frictional control variable,the slip weakening rate R,using empirical relationships obtained from laboratory experiments. In our model, weakening depends on the slip of an earthquake and tends to increase R, following the behaviour of real and simulated frictional interfaces. Healing causes R to decrease and depends on the time passed since the last slip. Results from models with these competing feedbacks are compared with simulations using non-evolving friction. Compared to fixed R conditions, evolving properties result in a significantly increased variability in the system dynamics. We find that for a given set of weakening parameters the resulting seismicity patterns are sensitive to details of the restrengthening process, such as the healing rate b and a lower cutoff time, tc, up to which no significant change in the friction parameter is observed. For relatively large and small cutoff times, the statistics are typical of fixed large and small R values, respectively. However, a wide range of intermediate values leads to significant fluctuations in the internal energy levels. The frequency-size statistics of earthquake occurrence show corresponding non-stationary characteristics on time scales over which negligible fluctuations are observed in the fixed- R case. The progressive evolution implies that,except for extreme weakening and healing rates,faults and fault networks possibly are not well characterized by steady states on typical catalogue time scales, thus highlighting the essential role of memory and history dependence in seismogenesis. The results suggest that an extrapolation to future seismicity occurrence based on temporally limited data may be misleading due to variability in seismicity patterns associated with competing mechanisms that affect fault stability. [source] Interseismic Plate coupling and strain partitioning in the Northeastern CaribbeanGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2008D. M. Manaker SUMMARY The northeastern Caribbean provides a natural laboratory to investigate strain partitioning, its causes and its consequences on the stress regime and tectonic evolution of a subduction plate boundary. Here, we use GPS and earthquake slip vector data to produce a present-day kinematic model that accounts for secular block rotation and elastic strain accumulation, with variable interplate coupling, on active faults. We confirm that the oblique convergence between Caribbean and North America in Hispaniola is partitioned between plate boundary parallel motion on the Septentrional and Enriquillo faults in the overriding plate and plate-boundary normal motion at the plate interface on the Northern Hispaniola Fault. To the east, the Caribbean/North America plate motion is accommodated by oblique slip on the faults bounding the Puerto Rico block to the north (Puerto Rico subduction) and to the south (Muertos thrust), with no evidence for partitioning. The spatial correlation between interplate coupling, strain partitioning and the subduction of buoyant oceanic asperities suggests that the latter enhance the transfer of interplate shear stresses to the overriding plate, facilitating strike-slip faulting in the overriding plate. The model slip rate deficit, together with the dates of large historical earthquakes, indicates the potential for a large (Mw7.5 or greater) earthquake on the Septentrional fault in the Dominican Republic. Similarly, the Enriquillo fault in Haiti is currently capable of a Mw7.2 earthquake if the entire elastic strain accumulated since the last major earthquake was released in a single event today. The model results show that the Puerto Rico/Lesser Antilles subduction thrust is only partially coupled, meaning that the plate interface is accumulating elastic strain at rates slower than the total plate motion. This does not preclude the existence of isolated locked patches accumulating elastic strain to be released in future earthquakes, but whose location and geometry are not resolvable with the present data distribution. Slip deficit on faults from this study are used in a companion paper to calculate interseismic stress loading and, together with stress changes due to historical earthquakes, derive the recent stress evolution in the NE Caribbean. [source] A Bayesian approach to estimating tectonic stress from seismological dataGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2007Richard Arnold SUMMARY Earthquakes are conspicuous manifestations of tectonic stress, but the non-linear relationships between the stresses acting on a fault plane, its frictional slip, and the ensuing seismic radiation are such that a single earthquake by itself provides little information about the ambient state of stress. Moreover, observational uncertainties and inherent ambiguities in the nodal planes of earthquake focal mechanisms preclude straightforward inferences about stress being drawn on the basis of individual focal mechanism observations. However, by assuming that each earthquake in a small volume of the crust represents a single, uniform state of stress, the combined constraints imposed on that stress by a suite of focal mechanism observations can be estimated. Here, we outline a probabilistic (Bayesian) technique for estimating tectonic stress directions from primary seismological observations. The Bayesian formulation combines a geologically motivated prior model of the state of stress with an observation model that implements the physical relationship between the stresses acting on a fault and the resultant seismological observation. We show our Bayesian formulation to be equivalent to a well-known analytical solution for a single, errorless focal mechanism observation. The new approach has the distinct advantage, however, of including (1) multiple earthquakes, (2) fault plane ambiguities, (3) observational errors and (4) any prior knowledge of the stress field. Our approach, while computationally demanding in some cases, is intended to yield reliable tectonic stress estimates that can be confidently compared with other tectonic parameters, such as seismic anisotropy and geodetic strain rate observations, and used to investigate spatial and temporal variations in stress associated with major faults and coseismic stress perturbations. [source] Mechanical deformation model of the western United States instantaneous strain-rate fieldGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2006Fred F. Pollitz SUMMARY We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M, 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific,North America plate boundary along ,1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. [source] Fault slip controlled by gouge rheology: a model for slow earthquakesGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2004A. Amoruso SUMMARY During 1997 several slow earthquakes have been recorded by a geodetic interferometer located beneath Gran Sasso, central Italy. The strain rise times of the events range from tens to thousands of seconds and strain amplitudes are of the order of 10,9. Amplitudes scale with the square root of the rise time and this suggests a diffusive behaviour of the slip propagation along the fault. In this work, we develop a model in which slip diffusion is the result of the presence of a gouge layer between fault faces, with a viscoplastic rheology. The fluid velocity field in the gouge layer diffuses in the directions of fault length and fault thickness, with different characteristic times. This model reproduces the relation between amplitude and rise time of measured strain signals. Synthetic straingrams, obtained for a horizontally layered, flat Earth and a source located a few kilometres from the instrument, are in agreement with observed signals. [source] The source process of the 2001 July 26 Skyros Island (Greece) earthquakeGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2004Zafeiria Roumelioti SUMMARY The spatial and temporal distribution of slip during the 2001 July 26 Skyros (Greece) earthquake Moment magnitude (M 6.5) is investigated using broadband data recorded at regional distances. The applied method involves estimation of the source time functions of the examined event through an empirical Green's function approach and inversion of their shapes to estimate kinematic source parameters. Our test inversions to statistically identify the fault plane, together with the distribution of aftershocks clearly indicate sinistral strike-slip faulting. In view of the fact that the Skyros epicentre lies near the western termination of the dextral strike-slip North Anatolian Fault (NAF) into the Aegean Sea, this sinistral strike-slip motion, for the first time instrumentally identified, has great tectonic significance. The best values searched through the inversion are 0.7 s for the rise time, and 2.4 km s,1 for the rupture velocity. Most of the slip appears to be concentrated in a relatively small area around the hypocentre, while a smaller slip patch was found at relatively large depth (18,24 km). At least two of the large aftershocks following the main event also occurred at the deeper part of the fault. Smaller amounts of slip are distributed in a wider area with dimensions similar to those inferred from the aftershock distribution studies and the empirical relations applicable to Greece. [source] Fault interactions and subduction tectonics: a re-examination of the Weber, New Zealand, earthquake sequence of 1990GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2003Russell Robinson SUMMARY Two moderate magnitude (Mw= 6.2 and 6.4) earthquakes in the Hikurangi subduction margin, North Island, New Zealand, occurred 3 months apart in 1990. The epicentres are nearly coincident, but the first (Weber 1, primarily normal faulting) occurred within the subducting Pacific Plate (depth about 28 km) and the second (Weber 2, a mix of thrusting and right-lateral motion) occurred within the overlying Australian Plate (depth about 13 km), the plate interface in between. The plate interface is interpreted to be locked trenchward (SE) from about the position of these events, with a transition to aseismic slip further down-dip to the NW. Several stress interaction questions are examined. First, to see whether Weber 1 triggered Weber 2, a range of possible mainshock parameters are used to calculate induced changes in the static Coulomb failure stress (,CFS). In most cases the results are consistent with triggering. Secondly, previous work showed that the rate of aftershock occurrence for Weber 1 decreased markedly about 35 days before Weber 2, recovering afterwards. To see whether aseismic pre-slip on the Weber 2 fault, as predicted by rate and state friction, could be the cause of the decrease, the same fault parameters have been used in reverse. The results are ambiguous, some fault parameters giving results consistent with the hypothesis and others not. The amount of pre-slip required for significant inhibition, however, is about equal to that in the mainshock and distributed over the entire fault plane. Thirdly, observations of episodic, aseismic slip down-dip from locked sections of other plate interfaces are becoming more common. Could such slip have triggered both Weber events? The induced changes in CFS for such slip are uniformly positive on the Weber 1 fault plane, and mostly positive on the Weber 2 fault plane, so the answer is yes. Although there is no independent evidence for aseismic slip prior to the Weber sequence, this case shows that such slip may trigger events on other nearby faults, besides loading the locked section of the plate interface. Static stress triggering considerations are thus likely to be important in subduction environments. [source] Co-seismic slip from the 1995 July 30 Mw= 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observationsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2002M. E. Pritchard Summary We analyse radar interferometric and GPS observations of the displacement field from the 1995 July 30 Mw= 8.1 Antofagasta, Chile, earthquake and invert for the distribution of slip along the co-seismic fault plane. Using a fixed fault geometry, we compare the use of singular-value decomposition and constrained linear inversion to invert for the slip distribution and find that the latter approach is better resolved and more physically reasonable. Separate inversions using only GPS data, only InSAR data from descending orbits, and InSAR data from both ascending and descending orbits without the GPS data illustrate the complimentary nature of GPS and the presently available InSAR data. The GPS data resolve slip near GPS benchmarks well, while the InSAR provides greater spatial sampling. The combination of ascending and descending InSAR data contributes greatly to the ability of InSAR to resolve the slip model, thereby emphasizing the need to acquire this data for future earthquakes. The rake, distribution of slip and seismic moment of our preferred model are generally consistent with previous seismic and geodetic inversions, although significant differences do exist. GPS data projected in the radar line-of-sight (LOS) and corresponding InSAR pixels have a root mean square (rms) difference of about 3 cm. Comparison of our predictions of vertical displacement and observed uplift from corraline algae have an rms of 10 cm. Our inversion and previous results reveal that the location of slip might be influenced by the 1987 Mw= 7.5 event. Our analysis further reveals that the 1995 slip distribution was affected by a 1988 Mw= 7.2 event, and might have influenced a 1998 Mw= 7.0 earthquake that occurred downdip of the 1995 rupture. Our slip inversion reveals a potential change in mechanism in the southern portion of the rupture, consistent with seismic results. Predictions of the satellite LOS displacement from a seismic inversion and a joint seismic/GPS inversion do not compare favourably with the InSAR observations. [source] Analyses of the stress field in southeastern France from earthquake focal mechanismsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2001Emmanuel Baroux Summary Owing to the apparent deformation field heterogeneity, the stress regimes around the Provence block, from the fronts of the Massif Central and Alpine range up to the Ligurian Sea, have not been well defined. To improve the understanding of the SE France stress field, we determine new earthquake focal mechanisms and compute the present-day stress states by inversion of the 89 available focal mechanisms around the Provence domain, including 17 new ones calculated in the current study. This study provides evidence of six distinct deformation domains around the Provence block, with different tectonic regimes. On a regional scale, we identify three zones characterized by significantly different stress regimes: a western one affected by an extensional stress (normal faulting) regime; a southeastern one characterized by a compressional stress (reverse to strike-slip faulting) regime with NNW- to WNW-trending ,1; and a northeastern one, namely the Digne nappe front, marked by a NE-trending compression. Note that the Digne nappe back domain is controlled by an extensional regime that is deforming the western Alpine core. This extensional regime could be a response to buoyancy forces related to the Alpine high topography. The stress regimes in the southeast of the Argentera Massif and around the Durance fault are consistent with a coherent NNW-trending ,1, implying a left-lateral component of the active reverse oblique slip of the Moyenne Durance Fault. In the Rhone Valley, an E-trending extension characterizes the tectonic regime, implying a normal component of the present-day N,^mes fault displacement. This study provides evidence for short-scale variation of the stress states, which arises from abrupt changes in the boundary force influences on upper crustal fragments (blocks). These spatial stress changes around the Provence block result from the coeval influence of forces applied at both its extremities, namely in the northeast the Alpine front push, and in the southeast the northward African plate drift. In addition to these boundary forces, the mantle plume under the Massif Central influences the western block boundary. [source] The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zoneGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000M. Berberian Summary In 1994 a sequence of five earthquakes with Mw 5.5,6.2 occurred in the Sistan belt of eastern Iran, all of them involving motion on blind thrusts with centroid depths of 5,10 km. Coseismic ruptures at the surface involved bedding-plane slip on a growing hanging-wall anticline displaying geomorphological evidence of uplift and lateral propagation. The 1994 earthquakes were associated with a NW-trending thrust system that splays off the northern termination of a major N,S right-lateral strike-slip fault. Elevation changes along the anticline ridge suggest that displacement on the underlying thrust dies out to the NW, away from its intersection with the strike-slip fault. This is a common fault configuration in eastern Iran and accommodates oblique NE,SW shortening across the N,S deforming zone, probably by anticlockwise rotations about a vertical axis. This style of fault kinematics may be transitional to a more evolved state that involves partitioning of the strike-slip and convergent motion onto separate subparallel faults. [source] Deformation and stress change associated with plate interaction at subduction zones: a kinematic modellingGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000Shaorong Zhao The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model, designed to simulate the motion of a subducted slab, can correctly produce the deformation and the main pattern of stress concentration associated with plate coupling at a subduction zone. The validity of the synthesized model is examined and partially verified by analysing the horizontal deformation observed by GPS near the Nankai trough, southwest Japan. [source] New observations on the splenius capitis and rectus capitis ventralis muscles of the Common Swift Apus apus (Apodidae)IBIS, Issue 4 2009CRISTETA BRAUSE In swifts and hummingbirds (Apodiformes), the splenius capitis muscle displays a characteristic modification, the ,cruciform origin'. The muscle pairs arise from the second vertebra by several slips which criss-cross and interdigitate with each other, before inserting into the skull. In the course of a study on the neck muscles of the Common Swift, we paid special attention to the arrangement of these slips of the splenius capitis muscle, and noted a previously unrecognized individual modification of this muscle. In addition, we observed an incipient cruciform origin of the deep portion (slip) of the rectus capitis ventralis muscle that has not been noticed for swifts or any other avian taxon before. The development and function of these modifications of the splenius capitis and rectus capitis ventralis muscle are discussed. [source] A three-dimensional integral equation model for calculating poro- and thermoelastic stresses induced by cold water injection into a geothermal reservoirINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2009X. X. Zhou Abstract Poro-mechanical and thermo-mechanical processes change the fracture aperture and thus affect the water flow pattern in the fracture during the cold water injection into enhanced geothermal systems (EGS). In addition, the stresses generated by these processes contribute to the phenomenon of reservoir seismicity. In this paper, we present a three-dimensional (3D) partially coupled poro-thermoelastic model to investigate the poroelastic and thermoelastic effects of cold water injection in EGS. In the model, the lubrication fluid flow and the convective heat transfer in the fracture are modeled by the finite element method, while the pore fluid diffusion and heat conductive transfer in the reservoir matrix are assumed to be 3D and modeled by the boundary integral equation method without the need to discretize the reservoir. The stresses at the fracture surface and in the reservoir matrix are obtained from the numerical model and can be used to assess the variation of in situ stress and induced seismicty with injection/extraction. Application of the model shows that rock cooling induces large tensile stresses and increases fracture conductivity, whereas the rock dilation caused by fluid leakoff decreases fracture aperture and increases compressive total stresses around the injection zone. However, increases in pore pressure reduce the effective stresses and can contribute to rock failure, fracture slip, and microseismic activity. Copyright © 2009 John Wiley & Sons, Ltd. [source] A rate-dependent cohesive crack model based on anisotropic damage coupled to plasticityINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2006Per-Ola Svahn Abstract In quasi-brittle material the complex process of decohesion between particles in microcracks and localization of the displacement field into macrocracks is limited to a narrow fracture zone, and it is often modelled with cohesive crack models. Since the anisotropic nature of the decohesion process in separation and sliding is essential, it is particularly focused in this paper. Moreover, for cyclic and dynamic loading the unloading, load reversal (including crack closure) and rate dependency are essential features that are included in a new model. The modelling of degradation is based on a ,localized' version of anisotropic continuum damage coupled to inelasticity. The concept of strain energy equivalence between the states in the effective and nominal settings is adopted in order to define the free energy of the interface. The proposed fracture criterion is of the Mohr type, with a smooth transition of the failure and kinematics (slip and dilatation) characteristics between tension and shear. The chosen potential, of the Lemaitre-type, for evolution of the dissipative processes is additively decomposed into plastic and damage parts, and non-associative constitutive equations are obtained. The constitutive equations are integrated by applying the backward Euler rule and by using Newton iteration. The proposed model is assessed analytically and numerically and a typical calibration procedure for concrete is proposed. Copyright © 2006 John Wiley & Sons, Ltd. [source] Kinematic models for non-coaxial granular materials.INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2005Part I: theory Abstract The purpose of this paper is to present a physically based plasticity model for non-coaxial granular materials. The model, which we shall call the double slip and rotation rate model (DSR2 model), is a pair of kinematic equations governing the velocity field. The model is based on a discrete micro-analysis of the kinematics of particles in contact, and is formulated by introducing a quantity called the averaged micro-pure rotation rate (APR) into the unified plasticity model which was proposed by one of the authors. Our macro,micro mechanical analysis shows that the APR is a non-linear function of, among other quantities, the macro-rotation rate of the major principal axis of stress taken in the opposite sense. The requirement of energy dissipation used in the double-sliding free-rotating model appears to be unduly restrictive as a constitutive assumption in continuum models. In the DSR2 model the APR tensor and the spin tensor are directly linked with non-coaxiality of the stress and deformation rate tensors. We also propose a simplified plasticity model based on the DSR2 model for a class of dilatant materials, and analyse its material stability. Copyright © 2005 John Wiley & Sons, Ltd. [source] |