Slurry Bubble Column (slurry + bubble_column)

Distribution by Scientific Domains

Terms modified by Slurry Bubble Column

  • slurry bubble column reactor

  • Selected Abstracts


    Gas-Liquid Mass Transfer in a Slurry Bubble Column at High Slurry Concentrations and High Gas Velocities

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2005
    C. O. Vandu
    Abstract The volumetric mass transfer coefficient kLa in a 0.1,m-diameter bubble column was studied for an air-slurry system. A C9 -C11n -paraffin oil was employed as the liquid phase with fine alumina catalyst carrier particles used as the solid phase. The n -paraffin oil had properties similar to those of the liquid phase in a commercial Fischer-Tropsch reactor under reaction conditions. The superficial gas velocity UG was varied in the range of 0.01 to 0.8,m/s, spanning both the homogeneous and heterogeneous flow regimes. The slurry concentration ,S ranged from 0 to 0.5. The experimental results obtained show that the gas hold-up ,G decreases with an increase in slurry concentration, with this decrease being most significant when ,S < 0.2. kLa/,G was found to be practically independent of the superficial gas velocity when UG > 0.1,m/s is taking on values predominantly between 0.4 and 0.6,s,1 when ,S = 0.1 to 0.4, and 0.29,s,1, when ,S = 0.5. This study provides a practical means for estimating the volumetric mass transfer coefficient kLa in an industrial-size bubble column slurry reactor, with a particular focus on the Fischer-Tropsch process as well as high gas velocities and high slurry concentrations. [source]


    A Method for the Detection of Defluidized Zones in Slurry Bubble Columns

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
    Ahad Emami
    Abstract The formation of defluidized zones was studied in a laboratory slurry bubble column equipped with heat transfer probes. The probes were small thermistors 2.4 mm in diameter. Dionized water and air were used as a liquid and gas phase, respectively. Solids were fine ceramic particles with mean size of 19.2 ,m and density of 2244 kg/m3. The effects of solids holdup (up to 30 wt% on gas free basis), gas superficial velocity (0.01-0.09 m/s), sparger height (0.01-0.09 m) on defluidized zones formation was studied. Cycle analysis of the local heat transfer fluctuations reliably detected the local formation of defluidized zones for each condition. La formation de zones défluidisées a été étudiée dans une colonne à bulles avec bouillie, équipée de sondes de transfert de chaleur. Les sondes étaient des petits thermistors de 2.4 mm de diamètre. De l'eau déionisée et de l'air constituaient les phases liquide et gazeuse. Les solides étaient des fines particules en céramique avec une taille moyenne de 19.2 µm et une densité de 2244 kg/m3. Les effets de la rétention solide (jusqu'à 30 % en masses sur base sans gaz), de la vitesse superficielle du gaz (0.01-0.09 m/s) et de la hauteur du distributeur de gaz ont été étudiés. L'analyse de cycle du transfert de local de chaleur a détecté de façon fiable la formation locale de zones défluidisées pour chaque condition. [source]


    Intensification of Slurry Bubble Columns by Vibration Excitement

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
    Jürg Ellenberger
    Abstract We show that application of low-frequency vibrations, in the 30 to 60 Hz range, to the liquid phase of an air , water , silica catalyst slurry bubble column causes significant enhancement of both gas holdup and volumetric mass transfer coefficient over a wide range of superficial gas velocities. The increase in the gas holdup is attributed mainly to a significant reduction in the rise velocity of the bubble swarm due to the generation of standing waves in the column. Furthermore, application of vibrations to the liquid phase serves to stabilize the homogenous bubbly flow regime and delay the onset of the churn-turbulent flow regime. On montre que l'application de vibrations de faibles fréquences (entre 30 et 60 Hz) à la phase liquide d'une colonne à bulles à suspensions de catalyseur air-eau-silice, permet une amélioration significative à la fois du coefficient de rétention de gaz et du coefficient du transfert de matière volumétrique pour une vaste gamme de vitesses de gaz superficielles. L'augmentation de la rétention de gaz est imputée principalement à une réduction importante de la vitesse de montée de l'essaim de bulles qui est due à la création de vagues stationnaires dans la colonne. En outre, l'application des vibrations à la phase liquide sert à stabiliser le régime d'écoulement à bulles homogène et retarde l'apparition du régime d'écoulement agité-pistonnant. [source]


    Influence of elevated pressure and particle lyophobicity on hydrodynamics and gas,liquid mass transfer in slurry bubble columns

    AICHE JOURNAL, Issue 3 2010
    Vinit P. Chilekar
    Abstract This article reports on the influence of elevated pressure and catalyst particle lyophobicity at particle concentrations up to 3 vol % on the hydrodynamics and the gas-to-liquid mass transfer in a slurry bubble column. The study was done with demineralized water (aqueous phase) and Isopar-M oil (organic phase) slurries in a 0.15 m internal diameter bubble column operated at pressures ranging from 0.1 to 1.3 MPa. The overall gas hold-up, the flow regime transition point, the average large bubble diameter, and the centerline liquid velocity were measured along with the gas,liquid mass transfer coefficient. The gas hold-up and the flow regime transition point are not influenced by the presence of lyophilic particles. Lyophobic particles shift the regime transition to a higher gas velocity and cause foam formation. Increasing operating pressure significantly increases the gas hold-up and the regime transition velocity, irrespective of the particle lyophobicity. The gas,liquid mass transfer coefficient is proportional to the gas hold-up for all investigated slurries and is not affected by the particle lyophobicity, the particle concentration, and the operating pressure. A correlation is presented to estimate the gas,liquid mass transfer coefficient as a function of the measured gas hold-up: . © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


    Detecting regime transitions in slurry bubble columns using pressure time series

    AICHE JOURNAL, Issue 7 2005
    Keshav C. Ruthiya
    Abstract Changes in the coherent standard deviation and in the average frequency of measured pressure time series with gas velocity, are proposed, as unique and unambiguous criteria to mark flow regime transitions in slurry bubble columns. In a 2-dimensional (2-D) slurry bubble column, pressure time series are measured at different gas velocities simultaneously with high-speed video recording of the gas-liquid flow. The frequency of occurrence and the average diameter of the large bubbles are determined from video image analysis. The gas velocity where the first large bubbles are detected, with an average diameter of 1.5 cm, and with a frequency of occurrence of one bubble per s, is designated as the first regime transition point (transition from the homogeneous regime to the transition regime). At this point, the coherent standard deviation of the measured pressure fluctuations clearly increases from zero. The gas velocity where the average diameter and the frequency of occurrence of the large bubbles become constant, is designated as the second regime transition point (transition from the transition regime to the heterogeneous regime). From this point onward, the slope of the coherent standard deviation of the measured pressure fluctuations clearly decreases with gas velocity, while the average frequency becomes constant. These clear changes with gas velocity in the coherent standard deviation, and in the average frequency are also demonstrated in a 3-D slurry bubble column. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]


    A Study on Hydrodynamics and Heat Transfer in a Bubble Column Reactor with Yeast and Bacterial Cell Suspensions

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2005
    Nigar Kantarci
    Abstract Hydrodynamics and heat transfer experiments were carried out in a slurry bubble column with air-water-yeast cells and air-water-bacteria cells systems to investigate gas hold-up, bubble characteristics and heat transfer coefficients with cell concentrations of 0.1% w/w and 0.4% w/w and superficial gas velocity up to 0.20 m/s. The gas hold-ups and heat transfer coefficients were found to increase with increasing gas velocity and cell concentration. The heat transfer coefficients were higher at the centre of the column as compared to the near wall region. The development of empirical correlations to predict the heat transfer coefficient in two- and three-phase systems was carried out with ±15% confidence interval at most. On a réalisé des expériences d'hydrodynamique et de transfert de chaleur dans une colonne triphasique gaz-liquide-solide avec des systèmes de cellules air-eau-levure et de cellules air-eau-bactéries afin d'étudier la rétention de gaz, les caractéristiques des bulles et les coefficients de transfert de chaleur avec des concentrations de cellules de 0,1 % en poids et 0,4 % en poids et des vitesses de gaz superficielles jusqu'à 0,20 m/s. On a trouvé que les rétentions de gaz et les coefficients de transfert de chaleur augmentaient avec la vitesse de gaz et la concentration en cellules. Les coefficients de transfert de chaleur sont plus grands au centre de la colonne que dans la région proche de la paroi. Des corrélations empiriques pour prédire le coefficient de transfert de chaleur dans des systèmes bi et triphasiques ont été établies avec un écart de confiance inférieur ou égal à ± 15%. [source]


    A Method for the Detection of Defluidized Zones in Slurry Bubble Columns

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
    Ahad Emami
    Abstract The formation of defluidized zones was studied in a laboratory slurry bubble column equipped with heat transfer probes. The probes were small thermistors 2.4 mm in diameter. Dionized water and air were used as a liquid and gas phase, respectively. Solids were fine ceramic particles with mean size of 19.2 ,m and density of 2244 kg/m3. The effects of solids holdup (up to 30 wt% on gas free basis), gas superficial velocity (0.01-0.09 m/s), sparger height (0.01-0.09 m) on defluidized zones formation was studied. Cycle analysis of the local heat transfer fluctuations reliably detected the local formation of defluidized zones for each condition. La formation de zones défluidisées a été étudiée dans une colonne à bulles avec bouillie, équipée de sondes de transfert de chaleur. Les sondes étaient des petits thermistors de 2.4 mm de diamètre. De l'eau déionisée et de l'air constituaient les phases liquide et gazeuse. Les solides étaient des fines particules en céramique avec une taille moyenne de 19.2 µm et une densité de 2244 kg/m3. Les effets de la rétention solide (jusqu'à 30 % en masses sur base sans gaz), de la vitesse superficielle du gaz (0.01-0.09 m/s) et de la hauteur du distributeur de gaz ont été étudiés. L'analyse de cycle du transfert de local de chaleur a détecté de façon fiable la formation locale de zones défluidisées pour chaque condition. [source]


    2D Slurry Bubble Column Hydrodynamic Phenomena Clarified with a 3D Gas,Liquid Model

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
    Jeroen H. J. Kluytmans
    Abstract The gas hold-up in a 2D bubble column is modelled using a 3D gas hold-up model. The influence of the scale of 2D bubble columns on several parameters, for instance, transition gas hold-up, transition gas velocity, and bubble rise velocities, is investigated and related to 3D bubble columns. By adapting the rise velocity of the large bubbles of an existing 3D bubble column model (Krishna et al., 2001a), the gas hold-up in both the homogeneous and the heterogeneous regime can be described satisfactorily. By adjusting the transition points only, it is also possible to describe the gas hold-up in systems containing small amounts of carbon particles and electrolyte. The smallest dimension of the 2D slurry bubble column, the column thickness, influences the location of the regime transition point. In the heterogeneous regime, however, it is only the largest column dimension, the column width, that influences the gas hold-up. These observations together enable proper 2D/3D bubble column comparison in future studies. Dans cette étude, la rétention de gaz dans une colonne à bulles en 2D est modélisée à l'aide d'un modèle de rétention de gaz en 3D. L'influence de l'échelle des colonnes à bulles 2D sur plusieurs paramètres, comme la rétention de gaz de transition, la vitesse de gaz de transition et les vitesses de montée des bulles, est étudiée et reliée aux colonnes à bulles 3D. On montre qu'en adaptant la vitesse de montée des bulles larges fournie par un modèle de colonnes à bulles 3D existant (Krishna et al., 2001a), la rétention de gaz tant en régime homogène qu'hétérogène peut être décrite de manière satisfaisante. En ajustant seulement les points de transition, il est également possible de décrire la rétention de gaz dans des systèmes contenant de petites quantités de particules de carbone et d'électrolyte. On a trouvé que la plus petite dimension de la colonne à bulles à suspensions 2D, soit l'épaisseur de la colonne, influence la position du point de transition de régime. Cependant, dans le régime hétérogène, c'est seulement la plus grande dimension de la colonne, soit la largeur de la colonne, qui influence la rétention de gaz. Toutes ces observations vont permettre des comparaisons adéquates des colonnes 2D et 3D dans les prochaines études. [source]


    Intensification of Slurry Bubble Columns by Vibration Excitement

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
    Jürg Ellenberger
    Abstract We show that application of low-frequency vibrations, in the 30 to 60 Hz range, to the liquid phase of an air , water , silica catalyst slurry bubble column causes significant enhancement of both gas holdup and volumetric mass transfer coefficient over a wide range of superficial gas velocities. The increase in the gas holdup is attributed mainly to a significant reduction in the rise velocity of the bubble swarm due to the generation of standing waves in the column. Furthermore, application of vibrations to the liquid phase serves to stabilize the homogenous bubbly flow regime and delay the onset of the churn-turbulent flow regime. On montre que l'application de vibrations de faibles fréquences (entre 30 et 60 Hz) à la phase liquide d'une colonne à bulles à suspensions de catalyseur air-eau-silice, permet une amélioration significative à la fois du coefficient de rétention de gaz et du coefficient du transfert de matière volumétrique pour une vaste gamme de vitesses de gaz superficielles. L'augmentation de la rétention de gaz est imputée principalement à une réduction importante de la vitesse de montée de l'essaim de bulles qui est due à la création de vagues stationnaires dans la colonne. En outre, l'application des vibrations à la phase liquide sert à stabiliser le régime d'écoulement à bulles homogène et retarde l'apparition du régime d'écoulement agité-pistonnant. [source]


    Survey of heat transfer mechanisms in a slurry bubble column

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2001
    Hanning Li
    Abstract Heat transfer mechanisms in the bulk and distributor regions of a slurry bubble column are investigated based on the measurements of local heat transfer in a 0.28 m diameter Plexiglas column. The gas, liquid and solid phases used are oil-free compressed air, tap water and 35 ,m glass beads. The slurry concentration and superficial gas velocity are varied from 0 to 40 vol% and 0.05 to 0.30 m/s respectively. Measurements have been made with a fast response heat flux probe which provided local instantaneous heat transfer coefficients. The time-averaged heat transfer coefficients in the bulk region were on average about 50% higher than the distributor region of the column. The wall region heat transfer coefficients are well predicted by the correlation of Deckwer et al. (1980). Heat transfer mechanism in column centre can be adequately described by the consecutive film and surface renewal model. Les mécanismes de transfert de chaleur dans le coeur et dans la région du distributeur d'une colonne à bulles à suspensions sont étudiés en mesurant le transfert de chaleur local dans une colonne en plexiglass de 0.28 m. Les phases gazeuse, liquide et solide utilisées sont de l'air cornprimé déhuilé, de l'eau du robinet et des billes de verre de 35 ,m. On a fait varier la concentration des suspensions et la vitesse de gaz superficielle de 0 à 40% en volume et de 0.05 à 0.30 m/s, respectivement. Les mesures ont été faites à l'aide d'une sonde de flux de chaleur à réponse rapide qui fournit les coefficients de transfert de chaleur instantanés locaux. Les coefficients de transfert de chaleur moyennés dans le temps dans le coeur étaient, en rnoyenne, environ 50% supérieurs à ceux de la région du distributeur dans la colonne. Les coefficients de transfert de chaleur de la région de la paroi sont bien predits par la cordation de Deckwer et al. (1980). Le mécanisme de transfert de chaleur au centre de la colonne peut ,tre adéquatement décrit par le modéle de renouvellement de surface et de film consécutif. [source]


    Influence of elevated pressure and particle lyophobicity on hydrodynamics and gas,liquid mass transfer in slurry bubble columns

    AICHE JOURNAL, Issue 3 2010
    Vinit P. Chilekar
    Abstract This article reports on the influence of elevated pressure and catalyst particle lyophobicity at particle concentrations up to 3 vol % on the hydrodynamics and the gas-to-liquid mass transfer in a slurry bubble column. The study was done with demineralized water (aqueous phase) and Isopar-M oil (organic phase) slurries in a 0.15 m internal diameter bubble column operated at pressures ranging from 0.1 to 1.3 MPa. The overall gas hold-up, the flow regime transition point, the average large bubble diameter, and the centerline liquid velocity were measured along with the gas,liquid mass transfer coefficient. The gas hold-up and the flow regime transition point are not influenced by the presence of lyophilic particles. Lyophobic particles shift the regime transition to a higher gas velocity and cause foam formation. Increasing operating pressure significantly increases the gas hold-up and the regime transition velocity, irrespective of the particle lyophobicity. The gas,liquid mass transfer coefficient is proportional to the gas hold-up for all investigated slurries and is not affected by the particle lyophobicity, the particle concentration, and the operating pressure. A correlation is presented to estimate the gas,liquid mass transfer coefficient as a function of the measured gas hold-up: . © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


    Detecting regime transitions in slurry bubble columns using pressure time series

    AICHE JOURNAL, Issue 7 2005
    Keshav C. Ruthiya
    Abstract Changes in the coherent standard deviation and in the average frequency of measured pressure time series with gas velocity, are proposed, as unique and unambiguous criteria to mark flow regime transitions in slurry bubble columns. In a 2-dimensional (2-D) slurry bubble column, pressure time series are measured at different gas velocities simultaneously with high-speed video recording of the gas-liquid flow. The frequency of occurrence and the average diameter of the large bubbles are determined from video image analysis. The gas velocity where the first large bubbles are detected, with an average diameter of 1.5 cm, and with a frequency of occurrence of one bubble per s, is designated as the first regime transition point (transition from the homogeneous regime to the transition regime). At this point, the coherent standard deviation of the measured pressure fluctuations clearly increases from zero. The gas velocity where the average diameter and the frequency of occurrence of the large bubbles become constant, is designated as the second regime transition point (transition from the transition regime to the heterogeneous regime). From this point onward, the slope of the coherent standard deviation of the measured pressure fluctuations clearly decreases with gas velocity, while the average frequency becomes constant. These clear changes with gas velocity in the coherent standard deviation, and in the average frequency are also demonstrated in a 3-D slurry bubble column. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]